

# DEPARTMENT OF THE AIR FORCE PACIFIC AIR FORCES

10 February 2014

### MEMORANDUM FOR RECORD

FROM: 18 AMDS/SGPB

SUBJECT: Amelia Earhart Intermediate and Bob Hope Primary School's Air/Soil Sample Results

- 1. **Background:** On 6 January and 23 January 2014, Airmen from the Bioenvironmental Engineering (BE) Flight collected and analyzed preliminary screening soil and air samples from the area behind Amelia Earhart Intermediate School (AEIS) and Bob Hope Primary School (BHPS). This sampling event was conducted to ensure Kadena Air Base was not impacted by the potential migration of contaminates from an excavation site approximately 75 meters from the perimeter fence.
- 2. **Sample Collection/Strategy:** BE collected a total of 13 soil and seven air samples from the area behind AEIS and BHPS. All air samples were collected at approximately 4 feet from the surface to model the breathing zone of the average child attending these schools. Soil samples were collected in accordance with the "Occupational and Environmental Health Site Assessment: Documentation and Data Management Technical Guide". AEIS samples (ten soil and four air) were collected from the interior fence line surrounding the AEIS soccer field. This fence is parallel to the off-base soccer field where the excavated barrels were found. BHPS samples (three soil and three air) were collected from behind the school at the closest location to the excavation site.

Background samples (two soil and two air) were collected approximately 1.2 miles away from the excavation site at Kadena Elementary School. The basis for selecting an appropriate location for background samples included a sufficient distance from the excavation site and similar lawn care and treatment services to those of the AEIS and BHPS fields. The only perceived varying factor between the two sites was due to vehicle emissions from Prefectural Highway 23 and the Okinawa Expressway. BE also collected a blank sample from the room the analysis was performed. All samples were analyzed by a field-portable gas chromatograph and mass spectrometer, specifically a Hazardous Air Pollutants On Site (HAPSITE) Smart with Headspace Sampling System.

3. **Interpretation of Data:** The HAPSITE is capable of identifying and quantifying a wide spectrum of unknown contaminates. The chemical spectrum is generated and matched to the "AMDIS Mass Spectral" library that consist of approximately 750 toxic industrial chemicals, chemical warfare agents, and chemicals the Environmental Protection Agency deems potentially hazardous.

The attached Automated Mass Spectral Deconvolution and Identification System (AMDIS) summary report lists a Net Fit number for each compound detected in the sample. This number outlines the quality or confidence of the spectral match. The Net Fit is based on a scale of 100. Please see table below:

| AMDIS Net Fit: | Quality: |
|----------------|----------|
| 70 -79         | Good     |
| 80-89          | Better   |
| >90            | Best     |

Internal standards are chemicals added to the sample to be utilized as a frame of reference to aid in the calculation of the concentration of identified chemicals found in the report. The table below outlines the chemicals utilized for the HAPSITE and Headspace units: (Please note: The stand alone HAPSITE is utilized to analyze air samples; while, the Headspace is an attachment to the HAPSITE that is utilized to analyzed soil and water samples.)

| HAPSITE                               | Headspace                             |
|---------------------------------------|---------------------------------------|
| Bromopentafluorobenzene (BPFB)        | Bromopentafluorobenzene (BPFB)        |
| 1,3,5 Trifluoromenthyl Benzene (Tris) | 1,3,5 Trifluoromenthyl Benzene (Tris) |
|                                       | Chlorobenzene – D5                    |
|                                       | 1,4 – Dichlorobenzene – D4            |

All internal standard substances are identified and quantified within the analytical results of the attachment.

- 4. **Summary:** The analytical results reported for both air and soil samples collected from KES and the Blank were subtracted from the AEIS and BHPS reports. All remaining chemicals identified in the AMDIS report were evaluated to determine their potential origin. Identified chemicals with concentrations were compared to established environmental health standards. In any instance an environmental standard was not available, comparisons were made utilizing U.S. occupational health exposure standards. All concentrations reported from the AMDIS for both AEIS and BHPS were in the parts per billion range (or very low concentrations) and were <u>not</u> at any level that would indicate the presence of an environmental health concern. At this time, BE concludes that no link exists between the excavation site and AEIS and BHPS.
- 5. If there are any questions or concerns, please feel free to contact the undersigned at Isaiah.Manigault@us.af.mil.

ISAIAH D. MANIGAULT, Maj, USAF, BSC Flight Commander, Bioenvironmental Engineering

#### Attachment:

- 1. AEIS and BHPS Analytical Air/Soil Sample Results
- 2. KES and Blank (Background) Air/Soil Sample Results

Unknown Identification Report
Date: 01/08/14 Time: 10:30:55

Calibration Method:

/Haps/Method/Volatiles.mth

Tune File: default.tun Method Description: Use/Limitations:

The methods described in this procedure provides analysis of 74 VOC compounds

For detailed information on this method, please refer to the technical report titled "Development and Demonstration of the Performance of Composite Calibration Curves for the Analysis of Volatile Organic Compounds in Air Using the HAPSITE Smart Plus" (MacGregor 2012) prepared by Battelle for USAFSAM.

Data File:

/Haps/Data/Volatiles/VOC\_20m\_20140108\_002.hps

Data Info:

| Valla GI 5 I | MOTHATION NOT AVAILABLE |        |      |       |           |
|--------------|-------------------------|--------|------|-------|-----------|
| #1           | Sulfur dioxide          |        |      |       |           |
| RT=          | 0                       | 1:26.0 | Net= | 82    |           |
| #2           | n-butane                |        |      |       |           |
| RT=          | 0                       | 1:29.2 | Fit= | 94.7  | 0.448 ppb |
| #3           | Acetone                 |        |      |       |           |
| RT=          | 0                       | 1:39.6 | Fit= | 90.9  | 3.278 ppb |
| #4           | Butane                  |        |      |       |           |
| RT=          | 0                       | 1:41.0 | Net= | 91.0* |           |
| <b>#</b> 5   | isopropyl alcohol       |        |      |       |           |
| RT=          | 0                       | 1:42.7 | Fit= | 54.4  | 1.677 ppb |
| #6           | Pentane                 |        |      |       |           |
| RT=          | 0                       | 1:46.0 | Net= | 90.0* |           |
| <b>#7</b>    | tert-butyl alcohol      |        |      |       |           |
| RT=          | 0                       | 1:52.1 | Fit= | 91.7  | 0.064 ppb |
| #8           | Methylene Chloride      |        |      |       |           |
| RT=          | 0                       | 1:54.2 | Fit= | 98.2  | 0.156 ppb |
| #9           | Carbon disulfide        |        |      |       |           |
| RT=          | 0                       | 2:00.5 | Fit= | 99.9  | 1.897 ppb |
| #10          | vinyl acetate           |        |      |       |           |

| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:13.2                                                                               | Fit=                                                 | 79.3                                                    | 2.543 ppb                                        |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|
| #11                                                                     | 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02,20,2                                                                               |                                                      | 1 0 10                                                  | -10 10                                           |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:13.2                                                                               | Fit=                                                 | 89.3                                                    | 3.171 ppb                                        |
| #12                                                                     | Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                      |                                                         |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:21.6                                                                               | Fit=                                                 | 88.7                                                    | 0.040 ppb                                        |
| #13                                                                     | ethyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |                                                      |                                                         | 1 1                                              |
| RT=                                                                     | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02:30.0                                                                               | Fit=                                                 | 93.5                                                    | 0.017 ppb                                        |
| #14                                                                     | chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       | _                                                    |                                                         |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:35.2                                                                               | Fit=                                                 | 96.4                                                    | 0.072 ppb                                        |
| #15                                                                     | Tris 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                      |                                                         |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:53.0                                                                               | Fit=                                                 | 85.4                                                    | 10.40 ppm                                        |
| #16                                                                     | TRIS HAPSITE IS #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                                                      |                                                         |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:54.0                                                                               | Net=                                                 | 97                                                      |                                                  |
| #17                                                                     | Tris 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                      |                                                         |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:54.0                                                                               | Fit=                                                 | 86.2                                                    | 10.40 ppm                                        |
| #18                                                                     | 1,2-dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                                                      |                                                         |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:55.1                                                                               | Fit=                                                 | 89.3                                                    | 0.009 ppb                                        |
| #19                                                                     | tetrahydrofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                      |                                                         |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02:56.1                                                                               | Fit=                                                 | 86.8                                                    | 0.086 ppb                                        |
| #20                                                                     | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                      |                                                         |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03:17.1                                                                               | Fit=                                                 | 100                                                     | 0.285 ppb                                        |
| #21                                                                     | Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                                      |                                                         |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03:22.3                                                                               | Fit=                                                 | 99.9                                                    | 0.123 ppb                                        |
| #22                                                                     | Cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                      |                                                         |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03:26.5                                                                               | Fit=                                                 | 97.4                                                    | 0.001 ppb                                        |
| 1122                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                      |                                                         |                                                  |
| #23                                                                     | 2-Butanone, 3-methyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       |                                                      |                                                         |                                                  |
| #23<br>RT=                                                              | 2-Butanone, 3-methyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03:34.0                                                                               | Net=                                                 | 77.0*                                                   |                                                  |
|                                                                         | 2-Butanone, 3-methyl-<br>Pentanal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03:34.0                                                                               | Net=                                                 | 77.0*                                                   |                                                  |
| RT=                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03:34.0                                                                               |                                                      | 77.0*                                                   |                                                  |
| RT=<br>#24<br>RT=<br>#25                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03:44.0                                                                               | Net=                                                 |                                                         |                                                  |
| RT=<br>#24<br>RT=                                                       | Pentanal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       | Net=                                                 | 90                                                      | 0.005 ppb                                        |
| RT=<br>#24<br>RT=<br>#25                                                | Pentanal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03:44.0                                                                               | Net=                                                 | 90                                                      |                                                  |
| RT=<br>#24<br>RT=<br>#25<br>RT=                                         | Pentanal  1,2-dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 03:44.0                                                                               | Net=<br>Fit=                                         | 90                                                      | 0.005 ppb<br>0.003 ppb                           |
| RT= #24 RT= #25 RT= #26 RT= #27                                         | Pentanal  1,2-dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 03:44.0<br>03:49.6<br>03:53.7                                                         | Net= Fit= Fit=                                       | 90                                                      |                                                  |
| RT=<br>#24<br>RT=<br>#25<br>RT=<br>#26<br>RT=                           | Pentanal  1,2-dichloropropane  bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03:44.0                                                                               | Net= Fit= Fit=                                       | 90<br>88.1<br>79.5                                      |                                                  |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28                                 | Pentanal  1,2-dichloropropane  bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03:44.0<br>03:49.6<br>03:53.7<br>04:04.1                                              | Net=  Fit=  Fit=  Fit=                               | 90<br>88.1<br>79.5<br>97.3                              | 0.003 ppb<br>0.006 ppb                           |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28 RT=                             | Pentanal  1,2-dichloropropane  bromodichloromethane  isooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03:44.0<br>03:49.6<br>03:53.7                                                         | Net=  Fit=  Fit=  Fit=                               | 90<br>88.1<br>79.5<br>97.3                              | 0.003 ppb                                        |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28 RT= #29                         | Pentanal  1,2-dichloropropane  bromodichloromethane  isooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03:44.0<br>03:49.6<br>03:53.7<br>04:04.1<br>04:12.5                                   | Net=  Fit=  Fit=  Fit=                               | 90<br>88.1<br>79.5<br>97.3                              | 0.003 ppb<br>0.006 ppb                           |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28 RT= #29 RT=                     | Pentanal  1,2-dichloropropane  bromodichloromethane  isooctane  methyl methacrylate  2-Propenoic acid, 2-methyl-, methyl-, methyl | 03:44.0<br>03:49.6<br>03:53.7<br>04:04.1                                              | Net=  Fit=  Fit=  Fit=                               | 90<br>88.1<br>79.5<br>97.3                              | 0.003 ppb<br>0.006 ppb                           |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28 RT= #29 RT= #30                 | Pentanal  1,2-dichloropropane  bromodichloromethane  isooctane  methyl methacrylate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03:44.0<br>03:49.6<br>03:53.7<br>04:04.1<br>04:12.5<br>nethyl e<br>04:13.0            | Net= Fit= Fit= Net=                                  | 90<br>88.1<br>79.5<br>97.3                              | 0.003 ppb<br>0.006 ppb<br>0.332 ppb              |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28 RT= #29 RT= #30 RT=             | Pentanal  1,2-dichloropropane  bromodichloromethane  isooctane  methyl methacrylate  2-Propenoic acid, 2-methyl-, methylane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03:44.0<br>03:49.6<br>03:53.7<br>04:04.1<br>04:12.5                                   | Net= Fit= Fit= Net=                                  | 90<br>88.1<br>79.5<br>97.3                              | 0.003 ppb<br>0.006 ppb                           |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28 RT= #29 RT= #30 RT= #31         | Pentanal  1,2-dichloropropane  bromodichloromethane  isooctane  methyl methacrylate  2-Propenoic acid, 2-methyl-, methyl-, methyl | 03:44.0<br>03:49.6<br>03:53.7<br>04:04.1<br>04:12.5<br>nethyl e<br>04:13.0            | Net= Fit= Fit= Net= Fit=                             | 90<br>88.1<br>79.5<br>97.3<br>100<br>88<br>82.9         | 0.003 ppb<br>0.006 ppb<br>0.332 ppb<br>0.007 ppb |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28 RT= #30 RT= #31 RT=             | Pentanal  1,2-dichloropropane  bromodichloromethane  isooctane  methyl methacrylate  2-Propenoic acid, 2-methyl-, methyl  | 03:44.0<br>03:49.6<br>03:53.7<br>04:04.1<br>04:12.5<br>nethyl e<br>04:13.0            | Net= Fit= Fit= Net= Fit=                             | 90<br>88.1<br>79.5<br>97.3<br>100<br>88<br>82.9         | 0.003 ppb<br>0.006 ppb<br>0.332 ppb              |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28 RT= #29 RT= #30 RT= #31 RT= #32 | Pentanal  1,2-dichloropropane  bromodichloromethane  isooctane  methyl methacrylate  2-Propenoic acid, 2-methyl-, methylane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03:44.0<br>03:49.6<br>03:53.7<br>04:04.1<br>04:12.5<br>nethyl e<br>04:13.0<br>04:16.7 | Net=  Fit=  Fit=  Net=  Fit=  Fit=  Fit=  Fit=       | 90<br>88.1<br>79.5<br>97.3<br>100<br>88<br>82.9         | 0.003 ppb 0.006 ppb 0.332 ppb 0.007 ppb          |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28 RT= #30 RT= #31 RT= #32 RT=     | Pentanal  1,2-dichloropropane  bromodichloromethane  isooctane  methyl methacrylate  2-Propenoic acid, 2-methyl-, methyl lsobutyl Ketone  Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03:44.0<br>03:49.6<br>03:53.7<br>04:04.1<br>04:12.5<br>nethyl e<br>04:13.0            | Net=  Fit=  Fit=  Net=  Fit=  Fit=  Fit=  Fit=       | 90<br>88.1<br>79.5<br>97.3<br>100<br>88<br>82.9         | 0.003 ppb<br>0.006 ppb<br>0.332 ppb<br>0.007 ppb |
| RT= #24 RT= #25 RT= #26 RT= #27 RT= #28 RT= #29 RT= #30 RT= #31 RT= #32 | Pentanal  1,2-dichloropropane  bromodichloromethane  isooctane  methyl methacrylate  2-Propenoic acid, 2-methyl-, methyl  | 03:44.0<br>03:49.6<br>03:53.7<br>04:04.1<br>04:12.5<br>nethyl e<br>04:13.0<br>04:16.7 | Net=  Fit=  Fit=  Net=  Fit=  Fit=  Fit=  Fit=  Fit= | 90<br>88.1<br>79.5<br>97.3<br>100<br>88<br>82.9<br>98.4 | 0.003 ppb 0.006 ppb 0.332 ppb 0.007 ppb          |

| #34        | dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |        |            |             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|------------|-------------|
| RT=        | 07:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6              | Fit=   | 83.7       | 0.001 ppb   |
| #35        | Furfural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |        |            |             |
| RT=        | 08:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0              | Net=   | <b>7</b> 9 |             |
| #36        | Octane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |        |            |             |
| RT=        | 08:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0              | Net=   | 78         |             |
| #37        | Acetamide, N,N-dimethyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |        |            |             |
| RT=        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mark>6.0</mark> | Net=   | 100        |             |
| #38        | BPFB_98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |        |            |             |
| RT=        | 09:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.7              | Fit=   | 91.3       | 5.350 ppm   |
| #39        | BPFB_248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>         | E.     | 02.2       | F 250       |
| RT=        | 09:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>6.8</u>       | FIT=   | 92.3       | 5.350 ppm   |
| #40<br>RT= | BPFB_117 09:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>c</i> 0       | Ci+_   | 02.2       | 5.350 ppm   |
| #41        | BPFB 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0              | rit-   | 92.3       | 5.550 ppiii |
| RT=        | 09:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.8              | Fit=   | 93.1       | 5.350 ppm   |
| #42        | BPFB HAPSITE IS # 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0              | 110-   | 33.1       | 3.330 ppiii |
| RT=        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0              | Net=   | 96         |             |
| #43        | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |        |            |             |
| RT=        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5              | Fit=   | 99.8       | 0.720 ppb   |
| #44        | p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |        |            |             |
| RT=        | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.0              | Net=   | 97.0*      |             |
| #45        | m&p-xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |        |            |             |
| RT=        | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.4              | Fit=   | 99.9       | 0.679 ppb   |
| #46        | Nonane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |        |            |             |
| RT=        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0              | Net=   | 88.0*      |             |
| #47        | styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |        |            |             |
| RT=        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>8.0</u>       | Fit=   | 99.4       | 0.110 ppb   |
| #48        | Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0              | N1 - 1 | 0.4        |             |
| RT=        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0              | Net=   | 94         |             |
| #49<br>RT= | p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0              | Net=   | 81.0*      |             |
| #50        | o-xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>U.U</u>       | Net=   | 81.0       |             |
| #50<br>RT= | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N 3              | Fit=   | 99.7       | 0.220 ppb   |
| #51        | cumene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5              | 110-   | 33.1       | 0.220 pps   |
| RT=        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2              | Fit=   | 90.9       | 0.023 ppb   |
| #52        | 1,3-Cyclohexadiene, 1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4 |                  |        |            | олошо ррж   |
| RT=        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Net=   | 93.0*      |             |
| <b>#53</b> | .alphaPinene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |        |            |             |
| RT=        | 12:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.0              | Net=   | 79.0*      |             |
| #54        | Camphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |        |            |             |
| RT=        | 12:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.0              | Net=   | 93.0*      |             |
| #55        | propyl benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |        |            |             |
| RT=        | 12:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <mark>6.5</mark> | Fit=   | 22.5       | 0.132 ppb   |
| #56        | 4-ethyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |        |            |             |
| RT=        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.0              | Fit=   | 76.8       | 0.043 ppb   |
| #57        | 1,3,5-trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |        |            |             |

| RT=              | 13:06.0                                          | Fit=  | 89.4  | 0.046 ppb |
|------------------|--------------------------------------------------|-------|-------|-----------|
| #58              | Phenol                                           |       |       |           |
| RT=              | 13:14.0                                          | Net=  | 98    |           |
| <b>#59</b>       | .alphaPinene                                     |       |       |           |
| RT=              | 13:24.0                                          | Net=  | 83.0* |           |
| #60              | Bicyclo[3.1.1]heptane, 6,6-dimethyl-2            |       |       |           |
| RT=              | 13:31.0                                          | Net=  | 80.0* |           |
| #61              | 1,2,4-trimethylbenzene                           |       |       |           |
| RT=              | 13:43.5                                          | Fit=  | 100   | 0.170 ppb |
| #62              | Benzene, 1,3-dichloro-                           |       |       |           |
| RT=              | 13:59.0                                          | Net=  | 78.0* |           |
| #63              | 1,2-dichlorobenzene                              |       |       |           |
| RT=              | 13:59.2                                          | Fit=  | 99.9  | 0.003 ppb |
| #64              | 1,4-dichlorobenzene                              |       |       |           |
| RT=              | 13:59.2                                          | Fit=  | 98.7  | 0.002 ppb |
| #65              | 1,3-dichlorobenzene                              | E     | 00.0  | 0.000     |
| RT=              | 13:59.2                                          | Fit=  | 99.3  | 0.003 ppb |
| #66              | benzyl chloride<br>14:06.5                       | F:±   | 90    | 0.025 nnh |
| RT=              |                                                  | FIL=  | 80    | 0.025 ppb |
| #67<br>RT=       | .alphaPinene<br>14:18.0                          | Not-  | 93.0* |           |
| #68              | 3-Carene                                         | Net-  | 95.0  |           |
| RT=              | 14:18.0                                          | Net=  | 94.0* |           |
| #69              | 1-Hexanol, 2-ethyl-                              | NCC-  | 54.0  |           |
| RT=              | 14:27.0                                          | Net=  | 85    |           |
| #70              | Limonene                                         |       |       |           |
| RT=              | 14:40.0                                          | Net=  | 97.0* |           |
| <b>#71</b>       | Acetophenone                                     |       |       |           |
| RT=              | 14:59.0                                          | Net=  | 81    |           |
| #72              | .alphaPinene                                     |       |       |           |
| RT=              | 15:14.0                                          | Net=  | 79.0* |           |
| <mark>#73</mark> | Dodecane                                         |       |       |           |
| RT=              | 15:24.0                                          | Net=  | 95.0* |           |
| #74              | Undecane                                         |       |       |           |
| RT=              | 15:30.0                                          | Net=  | 83.0* |           |
| <mark>#75</mark> | 1H-Indene, 2,3-dihydro-5-methyl-                 |       |       |           |
| RT=              | 15:45.0                                          | Net=  | 84    |           |
| #76              | 1,3-Cyclohexadiene, 1-methyl-4-(1-met            |       |       |           |
| RT=              | 15:52.0                                          | Net=  | 90.0* |           |
| #77<br>DT        | Dodecane                                         | Nich  | 7.0   |           |
| RT=              | 16:09.0                                          | ivet= | 76    |           |
| #78<br>RT=       | Undecane 16:15.0                                 | Not-  | 01.0* |           |
| #79              | 16:15.0<br>1,3-Cyclohexadiene, 1-methyl-4-(1-met | ivet= | 81.0* |           |
| #79<br>RT=       | 16:33.0                                          | Net-  | 89.0* |           |
| #80              | Cyclohexene, 1-methyl-4-(1-methylethy            | IVE L | 03.0  |           |
| #60<br>RT=       | 16:48.0                                          | Net=  | 83.0* |           |
| 141-             | 10.46.0                                          | ivet- | 05.0  |           |

| #81 | Naphthalene |         |      |       |  |
|-----|-------------|---------|------|-------|--|
| RT= |             | 17:34.0 | Net= | 84    |  |
| #82 | Dodecane    |         |      |       |  |
| RT= |             | 17:58.0 | Net= | 89.0* |  |
| #83 | Propyne     |         |      |       |  |
| RT= |             | 20:28.0 | Net= | 79.0* |  |

Unknown Identification Report Date: 01/23/14 Time: 10:36:01

Calibration Method:

/Haps/Method/Analyze/Concentrator/gc\_cb5m.mth

Tune File: default.tun

Method Description: Use/Limitations:

The methods described in this procedure provides analysis of chemicals in air in air utilizing the tri-bed concentrator tube with the HAPSITE SMART portable GC/MS connected to the laptop computer. The gc\_cb5m (5 minute sampling time) and The gc\_cb20m (20 minute sampling time) methods are used to determine chemical concentration levels in the ppt range. The 20 minute method provides the best sensitivity.

Data File:

/Haps/Data/Analyze/Concentrator/gc\_cb5m/gc\_cb5m\_20140123\_002.hps Data Info:

| #1  | BPFB_117 |      |      |           |
|-----|----------|------|------|-----------|
| RT= | 08:00.1  | Fit= | 99.7 | 5.350 ppm |

Unknown Identification Report
Date: 01/23/14 Time: 11:11:28

Calibration Method:

/Haps/Method/Analyze/Concentrator/gc\_cb5m.mth

Tune File: default.tun

Method Description: Use/Limitations:

The methods described in this procedure provides analysis of chemicals in air in air utilizing the tri-bed concentrator tube with the HAPSITE SMART portable GC/MS connected to the laptop computer. The gc\_cb5m (5 minute sampling time) and The gc\_cb20m (20 minute sampling time) methods are used to determine chemical concentration levels in the ppt range. The 20 minute method provides the best sensitivity.

#### Data File:

/Haps/Data/Analyze/Concentrator/gc\_cb5m/gc\_cb5m\_20140123\_003.hps Data Info:

| #1  | BPFB_117 |      |      |           |
|-----|----------|------|------|-----------|
| RT= | 07:59.0  | Fit= | 99.6 | 5.350 ppm |
| #2  | BPFB_98  |      |      |           |
| RT= | 07:59.0  | Fit= | 99.6 | 5.350 ppm |

Unknown Identification Report Date: 01/23/14 Time: 11:50:11

Calibration Method:

/Haps/Method/Analyze/Concentrator/gc\_cb5m.mth

Tune File: default.tun

Method Description: Use/Limitations:

The methods described in this procedure provides analysis of chemicals in air in air utilizing the tri-bed concentrator tube with the HAPSITE SMART portable GC/MS connected to the laptop computer. The gc\_cb5m (5 minute sampling time) and The gc\_cb20m (20 minute sampling time) methods are used to determine chemical concentration levels in the ppt range. The 20 minute method provides the best sensitivity.

#### Data File:

/Haps/Data/Analyze/Concentrator/gc\_cb5m/gc\_cb5m\_20140123\_004.hps Data Info:

| #1  | BPFB_117 |      |      |           |
|-----|----------|------|------|-----------|
| RT= | 07:59.2  | Fit= | 99.6 | 5.350 ppm |
| #2  | BPFB_98  |      |      |           |
| RT= | 07:59.2  | Fit= | 99.6 | 5.350 ppm |

Unknown Identification Report Date: 01/07/14 Time: 15:48:59

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR

and CANNOT be controlled for. This

method is only Semi-Quantitative

Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to

150 C then ramp at 10 C/min to 180 C.

Open loop

### Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140107\_154859\_019.hps Data Info:

| #1        | Isobutane  |                        |      |           |  |  |  |
|-----------|------------|------------------------|------|-----------|--|--|--|
| RT=       | 01:22.0    | Net=                   | 76   |           |  |  |  |
| #2        | Acetone    |                        |      |           |  |  |  |
| RT=       | 01:35.0    | Net=                   | 79   |           |  |  |  |
| #3        | Benzene, f | luoro-                 |      |           |  |  |  |
| RT=       | 02:55.0    | Net=                   | 94   |           |  |  |  |
| #4        | Chloroben  | zene-d5                |      |           |  |  |  |
| RT=       | 07:28.0    | Net=                   | 94   |           |  |  |  |
| <b>#5</b> | BPFB HAPS  | SITE IS # 2            |      |           |  |  |  |
| RT=       | 07:56.0    | Net=                   | 97   |           |  |  |  |
| #6        | 117_BPFB   |                        |      |           |  |  |  |
| RT=       | 07:56.2    | Fit=                   | 99.7 | 4.820 ppm |  |  |  |
| <b>#7</b> | 98_BPFB    |                        |      |           |  |  |  |
| RT=       | 07:56.2    | Fit=                   | 99.7 | 4.820 ppm |  |  |  |
| #8        | 117_BPFB   |                        |      |           |  |  |  |
| RT=       | 07:56.2    | Fit=                   | 99.9 | 4.820 ppm |  |  |  |
| <b>#9</b> | 98_BPFB    |                        |      |           |  |  |  |
| RT=       | 07:56.2    | Fit=                   | 99.9 | 4.820 ppm |  |  |  |
| #10       | 1,4-Dichlo | 1,4-Dichlorobenzene-D4 |      |           |  |  |  |
| RT=       | 11:06.0    | Net=                   | 96   |           |  |  |  |

Unknown Identification Report
Date: 01/09/14 Time: 09:01:05

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to

150 C then ramp at 10 C/min to 180 C.

Open loop

Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140109\_090105\_020.hps

|             |             |             |      |           | <b>EPA Residential Soil</b> | % of Regulatory |
|-------------|-------------|-------------|------|-----------|-----------------------------|-----------------|
| Valid GPS I | nformation  | Not Availab | le   |           | Standard                    | Limit           |
| #1          | Acetone     |             |      |           |                             |                 |
| RT=         | 01:36.0     | Net=        | 78   |           |                             |                 |
| #2          | 2-Butanon   | е           |      |           |                             |                 |
| RT=         | 02:05.0     | Net=        | 83   |           |                             |                 |
| #3          | Benzene, f  | luoro-      |      |           |                             |                 |
| RT=         | 02:58.0     | Net=        | 93   |           |                             |                 |
| #4          | Chloroben   |             |      |           |                             |                 |
| RT=         | 07:35.0     | Net=        | 95   |           |                             |                 |
| #5          | BPFB HAPS   | SITE IS # 2 |      |           |                             |                 |
| RT=         | 08:01.0     | Net=        | 98   |           | HAPSITE Internal Standard   |                 |
| #6          | 117_BPFB    |             |      |           |                             |                 |
| RT=         | 08:01.2     | Fit=        | 99.5 | 4.820 ppm | HAPSITE Internal Standard   |                 |
| <b>#7</b>   | 98_BPFB     |             |      |           |                             |                 |
| RT=         | 08:01.2     | Fit=        | 99.5 | 4.820 ppm | HAPSITE Internal Standard   |                 |
| #8          | 117_BPFB    |             |      |           |                             |                 |
| RT=         | 08:01.2     | Fit=        | 99.6 | 4.820 ppm | HAPSITE Internal Standard   |                 |
| #9          | 98_BPFB     |             |      |           |                             |                 |
| RT=         | 08:01.2     | Fit=        | 99.6 | 4.820 ppm | HAPSITE Internal Standard   |                 |
| #10         | Benzaldeh   | yde         |      |           |                             |                 |
| RT=         | 10:10.0     | Net=        | 92   |           |                             |                 |
| #11         | 1,4-Dichlor | robenzene-[ | 04   |           |                             |                 |
| RT=         | 11:09.0     | Net=        | 96   |           |                             |                 |

Unknown Identification Report Date: 01/09/14 Time: 11:40:48

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to 150 C then ramp at 10 C/min to 180 C.

Open loop

Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140109\_114048\_022.hps Data Info:

|             |            |             |      |           |                             | % of       |
|-------------|------------|-------------|------|-----------|-----------------------------|------------|
|             |            |             |      |           | <b>EPA Residential Soil</b> | Regulatory |
| Valid GPS I | nformation | Not Availab | le   |           | Standard                    | Limit      |
| #1          | Benzene, f | luoro-      |      |           |                             |            |
| RT=         | 02:57.0    | Net=        | 92   |           |                             |            |
| #2          | Chloroben  | zene-d5     |      |           |                             |            |
| RT=         | 07:31.0    |             | 93   |           |                             |            |
| #3          | BPFB HAPS  | SITE IS # 2 |      |           |                             |            |
| RT=         | 07:58.0    | Net=        | 99   |           | HAPSITE Internal Standard   |            |
| #4          | 117_BPFB   |             |      |           |                             |            |
| RT=         | 07:58.3    | Fit=        | 98.4 | 4.820 ppm | HAPSITE Internal Standard   |            |
| #5          | 117_BPFB   |             |      |           |                             |            |
| RT=         | 07:58.3    | Fit=        | 98.3 | 4.820 ppm | HAPSITE Internal Standard   |            |
| #6          | 98_BPFB    |             |      |           |                             |            |
| RT=         | 07:59.3    | Fit=        | 98.4 | 4.820 ppm | HAPSITE Internal Standard   |            |
| <b>#</b> 7  | 98_BPFB    |             |      |           |                             |            |
| RT=         | 07:59.3    | Fit=        | 98.1 | 4.820 ppm | HAPSITE Internal Standard   |            |
| #8          | Benzaldeh  | yde         |      |           |                             |            |
| RT=         | 10:08.0    | Net=        | 80   |           |                             |            |
| #9          | 1,4-Dichlo | robenzene-I | D4   |           |                             |            |
| RT=         | 10:39.0    | Net=        | 85   |           |                             |            |

Unknown Identification Report
Date: 01/09/14 Time: 12:10:28

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to 150 C then ramp at 10 C/min to 180 C.

Open loop

Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140109\_121028\_023.hps Data Info:

Valid GPS Information Not Available

EPA Residential Soil % of Regulatory

| Valid GPS Information Not Available |            |             | le   |           | Standard                  | Limit |
|-------------------------------------|------------|-------------|------|-----------|---------------------------|-------|
| #1                                  | Benzene, f | luoro-      |      |           |                           |       |
| RT=                                 | 02:57.0    | Net=        | 91   |           |                           |       |
| #2                                  | Chloroben  | zene-d5     |      |           |                           |       |
| RT=                                 | 07:30.0    | Net=        | 93   |           |                           |       |
| #3                                  | 117_BPFB   |             |      |           |                           |       |
| RT=                                 | 07:58.6    | Fit=        | 97.9 | 4.820 ppm | HAPSITE Internal Standard |       |
| #4                                  | 98_BPFB    |             |      |           |                           |       |
| RT=                                 | 07:58.6    | Fit=        | 97.9 | 4.820 ppm | HAPSITE Internal Standard |       |
| <b>#5</b>                           | 117_BPFB   |             |      |           |                           |       |
| RT=                                 | 07:58.6    | Fit=        | 97.6 | 4.820 ppm | HAPSITE Internal Standard |       |
| #6                                  | 98_BPFB    |             |      |           |                           |       |
| RT=                                 | 07:58.6    | Fit=        | 97.6 | 4.820 ppm | HAPSITE Internal Standard |       |
| <b>#</b> 7                          | BPFB HAPS  | SITE IS # 2 |      |           |                           |       |
| RT=                                 | 07:59.0    | Net=        | 98   |           | HAPSITE Internal Standard |       |
| #8                                  | 1,4-Dichlo | robenzene-l | D4   |           |                           |       |
| RT=                                 | 10:04.0    | Net=        | 91   |           |                           |       |
| #9                                  | 1,4-Dichlo | robenzene-[ | D4   |           |                           |       |
| RT=                                 | 11:08.0    | Net=        | 96   |           |                           |       |

Unknown Identification Report Date: 01/09/14 Time: 12:42:42

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to 150 C then ramp at 10 C/min to 180 C.

Open loop

Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140109\_124242\_024.hps Data Info:

V 1:10001 f ... N . A ... 11.11

EPA Residential Soil % of Regulatory
Standard Limit

| Valid GPS Information Not Available |            |             |       |           | Standard                  | Limit |
|-------------------------------------|------------|-------------|-------|-----------|---------------------------|-------|
| #1                                  | Propyne    |             |       |           |                           |       |
| RT=                                 | 01:03.0    | Net=        | 79.0* |           |                           |       |
| #2                                  | Benzene, f | luoro-      |       |           |                           |       |
| RT=                                 | 02:50.0    | Net=        | 91    |           |                           |       |
| #3                                  | Chloroben  | zene-d5     |       |           |                           |       |
| RT=                                 | 03:21.0    | Net=        | 88    |           |                           |       |
| #4                                  | BPFB HAPS  | SITE IS # 2 |       |           |                           |       |
| RT=                                 | 04:01.0    | Net=        | 88    |           | HAPSITE Internal Standard |       |
| #5                                  | Chloroben  | zene-d5     |       |           |                           |       |
| RT=                                 | 07:26.0    | Net=        | 92    |           |                           |       |
| #6                                  | BPFB HAPS  | SITE IS # 2 |       |           |                           |       |
| RT=                                 | 07:53.0    | Net=        | 98    |           | HAPSITE Internal Standard |       |
| #7                                  | 117_BPFB   |             |       |           |                           |       |
| RT=                                 | 07:54.4    | Fit=        | 97.9  | 4.820 ppm | HAPSITE Internal Standard |       |
| #8                                  | 98_BPFB    |             |       |           |                           |       |
| RT=                                 | 07:54.4    | Fit=        | 97.8  | 4.820 ppm | HAPSITE Internal Standard |       |
| #9                                  | 117_BPFB   |             |       |           |                           |       |
| RT=                                 | 07:54.4    | Fit=        | 97.6  | 4.820 ppm | HAPSITE Internal Standard |       |
| #10                                 | 98_BPFB    |             |       |           |                           |       |
| RT=                                 | 07:54.4    | Fit=        | 97.5  | 4.820 ppm | HAPSITE Internal Standard |       |
| #11                                 | 1,4-Dichlo | robenzene-  | D4    |           |                           |       |
| RT=                                 | 10:31.0    | Net=        | 91    |           |                           |       |

**Unknown Identification Report** Date: 01/09/14 Time: 13:18:08

Calibration Method:

/Haps/Method/Analyze/Headspace/hs slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative

Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to 150 C then ramp at 10 C/min to 180 C.

Open loop

Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140109\_131808\_025.hps Data Info:

Valid GPS Information Not Available

Target Library: C:\hapsrun\method\CWA\_hssl

Last Calibrated:

Peak Search Parameters:

0:35.00 Search Window: Window Expand Factor: 0.030

Peak Resolution: 30 Noise Level Multiplier: 2.000 40000 Minimum Area: Minimum Width: 7 Maximum Width: 60 Minimum Fit: 0.900 Minimum Purity:

No Internal Standard Compound is found.

0.500

Target Library: C:\hapsrun\method\hs\_slitf

Last Calibrated:

Peak Search Parameters:

0:35.00 Search Window: Window Expand Factor: 0.030

Peak Resolution: 30

Noise Level Multiplier: 2.000
Minimum Area: 40000
Minimum Width: 7
Maximum Width: 60
Minimum Fit: 0.900
Minimum Purity: 0.500

No Internal Standard Compound is found.

Unknown Identification Report
Date: 01/09/14 Time: 15:06:33

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.
Column 60 for 1 min ramp at 20 C/min to

150 C then ramp at 10 C/min to 180 C.

Open loop

Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140109\_150633\_027.hps

|              |            |             |       |           | EPA Residential Soil      | % of Regulatory |
|--------------|------------|-------------|-------|-----------|---------------------------|-----------------|
| Valid GPS Ir | nformation | Not Availab | le    | Standard  | Limit                     |                 |
| #1           | Propyne    |             |       |           |                           |                 |
| RT=          | 00:29.0    | Net=        | 78.0* |           |                           |                 |
| #2           | Propyne    |             |       |           |                           |                 |
| RT=          | 01:04.0    | Net=        | 79.0* |           |                           |                 |
| #3           | Cyclopropa | ane         |       |           |                           |                 |
| RT=          | 01:07.0    | Net=        | 81    |           |                           |                 |
| #4           | Benzene, f | luoro-      |       |           |                           |                 |
| RT=          | 02:57.0    | Net=        | 92    |           |                           |                 |
| #5           | Chloroben  | zene-d5     |       |           |                           |                 |
| RT=          | 07:30.0    | Net=        | 92    |           |                           |                 |
| #6           | BPFB HAPS  | SITE IS # 2 |       |           |                           |                 |
| RT=          | 07:58.0    | Net=        | 98    |           | HAPSITE Internal Standard |                 |
| <b>#</b> 7   | 117_BPFB   |             |       |           |                           |                 |
| RT=          | 07:58.5    | Fit=        | 97.5  | 4.820 ppm | HAPSITE Internal Standard |                 |
| #8           | 98_BPFB    |             |       |           |                           |                 |
| RT=          | 07:58.5    | Fit=        | 97.5  | 4.820 ppm | HAPSITE Internal Standard |                 |
| #9           | 117_BPFB   |             |       |           |                           |                 |
| RT=          | 07:58.5    | Fit=        | 97.1  | 4.820 ppm | HAPSITE Internal Standard |                 |
| #10          | 98_BPFB    |             |       |           |                           |                 |
| RT=          | 07:58.5    | Fit=        | 97.1  | 4.820 ppm | HAPSITE Internal Standard |                 |
| #11          | 1,4-Dichlo | robenzene-l | D4    |           |                           |                 |
| RT=          | 11:07.0    | Net=        | 96    |           |                           |                 |

**Unknown Identification Report** Date: 01/10/14 Time: 13:28:15

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to 150 C then ramp at 10 C/min to 180 C.

Open loop

Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140110\_132815\_029.hps Data Info:

**EPA Residential Soil** % of Regulatory Standard

| Valid GPS Information Not Available |            |             |      |           | Standard                  | Limit |
|-------------------------------------|------------|-------------|------|-----------|---------------------------|-------|
| #1                                  | Benzene, f | luoro-      |      |           |                           |       |
| RT=                                 | 02:57.0    | Net=        | 97   |           |                           |       |
| #2                                  | Chloroben  | zene-d5     |      |           |                           |       |
| RT=                                 | 03:41.0    | Net=        | 78   |           |                           |       |
| #3                                  | Chloroben  | zene-d5     |      |           |                           |       |
| RT=                                 | 07:34.0    | Net=        | 93   |           |                           |       |
| #4                                  | 117_BPFB   |             |      |           |                           |       |
| RT=                                 | 07:59.6    | Fit=        | 99.6 | 4.820 ppm | HAPSITE Internal Standard |       |
| #5                                  | 98_BPFB    |             |      |           |                           |       |
| RT=                                 | 07:59.6    | Fit=        | 99.6 | 4.820 ppm | HAPSITE Internal Standard |       |
| #6                                  | 117_BPFB   |             |      |           |                           |       |
| RT=                                 | 07:59.6    | Fit=        | 99.7 | 4.820 ppm | HAPSITE Internal Standard |       |
| #7                                  | 98_BPFB    |             |      |           |                           |       |
| RT=                                 | 07:59.6    | Fit=        | 99.7 | 4.820 ppm | HAPSITE Internal Standard |       |
| #8                                  | BPFB HAPS  | SITE IS # 2 |      |           |                           |       |
| RT=                                 | 08:00.0    | Net=        | 98   |           | HAPSITE Internal Standard |       |
| #9                                  | 1,4-Dichlo | robenzene-I | D4   |           |                           |       |
| RT=                                 | 11:09.0    | Net=        | 96   |           |                           |       |

Unknown Identification Report Date: 01/10/14 Time: 14:29:42

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.
Column 60 for 1 min ramp at 20 C/min to

150 C then ramp at 10 C/min to 180 C.

Open loop

Data File:

#1

RT=

#2 RT=

#3

RT=

#4

RT=

#5

RT=

#6

RT=

#7

RT=

#8

RT=

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140110\_142942\_031.hps Data Info:

96

93

99.6 4.820 ppm

99.7 4.820 ppm

99.7 4.820 ppm

99.7 4.820 ppm

98

96

Valid GPS Information Not Available

117 BPFB

117 BPFB

98 BPFB

98 BPFB

Benzene, fluoro-

02:55.0 Net=

Chlorobenzene-d5

07:30.0 Net=

07:56.8 Fit=

07:56.8 Fit=

07:57.9 Fit=

07:57.9 Fit=

07:58.0 Net=

11:07.0 Net=

1,4-Dichlorobenzene-D4

| Li / i i i cola ci i ci al oci | 70 of Regulatory |
|--------------------------------|------------------|
| Standard                       | Limit            |
|                                |                  |
|                                |                  |
|                                |                  |
|                                |                  |
|                                |                  |
| HAPSITE Internal Standard      |                  |
|                                |                  |
| HAPSITE Internal Standard      |                  |
|                                |                  |
| HAPSITE Internal Standard      |                  |
|                                |                  |
| HAPSITE Internal Standard      |                  |
|                                |                  |
| HAPSITE Internal Standard      |                  |
|                                |                  |

**EPA Residential Soil** 

% of Regulatory

Unknown Identification Report Date: 01/13/14 Time: 12:49:46

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.
Column 60 for 1 min ramp at 20 C/min to

150 C then ramp at 10 C/min to 180 C. Open loop

Data File:

 $/ Haps/Data/Analyze/Head space/hs\_slls/hs\_slls\_20140113\_124946\_033.hps$ 

|             |            |             |      |           | <b>EPA Residential Soil</b> | % of Regulatory |
|-------------|------------|-------------|------|-----------|-----------------------------|-----------------|
| Valid GPS I | nformation | Not Availab | le   |           | Standard                    | Limit           |
| #1          | Benzene, f | luoro-      |      |           |                             |                 |
| RT=         | 02:52.0    | Net=        | 96   |           |                             |                 |
| #2          | Chloroben  | zene-d5     |      |           |                             |                 |
| RT=         | 07:27.0    | Net=        | 92   |           |                             |                 |
| #3          | BPFB HAPS  | SITE IS # 2 |      |           |                             |                 |
| RT=         | 07:55.0    | Net=        | 98   |           |                             |                 |
| #4          | 117_BPFB   |             |      |           |                             |                 |
| RT=         | 07:55.4    | Fit=        | 99.5 | 4.820 ppm | HAPSITE Internal Standard   |                 |
| #5          | 98_BPFB    |             |      |           |                             |                 |
| RT=         | 07:55.4    | Fit=        | 99.5 | 4.820 ppm | HAPSITE Internal Standard   |                 |
| #6          | 117_BPFB   |             |      |           |                             |                 |
| RT=         | 07:55.4    | Fit=        | 99.5 | 4.820 ppm | HAPSITE Internal Standard   |                 |
| #7          | 98_BPFB    |             |      |           |                             |                 |
| RT=         | 07:55.4    | Fit=        | 99.5 | 4.820 ppm | HAPSITE Internal Standard   |                 |
| #8          | 1,4-Dichlo | robenzene-l | D4   |           |                             |                 |
| RT=         | 11:07.0    | Net=        | 96   |           |                             |                 |

Unknown Identification Report Date: 01/08/14 Time: 15:11:47

Calibration Method:

/Haps/Method/Volatiles.mth

Tune File: default.tun Method Description: Use/Limitations:

The methods described in this procedure provides analysis of 74 VOC compounds

For detailed information on this method, please refer to the technical report titled "Development and Demonstration of the Performance of Composite Calibration Curves for the Analysis of Volatile Organic Compounds in Air Using the HAPSITE Smart Plus" (MacGregor 2012) prepared by Battelle for USAFSAM.

Data File:

/Haps/Data/Volatiles/VOC\_20m\_20140108\_003.hps Data Info:

| #1         | Culturadian | ide.      |       |           |
|------------|-------------|-----------|-------|-----------|
|            | Sulfur diox |           |       |           |
| RT=        | 01:25.0     | Net=      | 81    |           |
| #2         | Butane      |           |       |           |
| RT=        | 01:30.0     | Net=      | 94.0* |           |
| #3         | n-butane    |           |       |           |
| RT=        | 01:30.1     | Fit=      | 100   | 1.338 ppb |
| #4         | Acetone     |           |       |           |
| RT=        | 01:40.7     | Fit=      | 82.9  | 1.735 ppb |
| <b>#</b> 5 | acrolein    |           |       |           |
| RT=        | 01:41.7     | Fit=      | 96.3  | 9.125 ppb |
| #6         | Butane, 2-  | methyl-   |       |           |
| RT=        | 01:42.0     | Net=      | 96.0* |           |
| <b>#</b> 7 | Pentane     |           |       |           |
| RT=        | 01:47.0     | Fit=      | 99.5  | 0.804 ppb |
| #8         | tert-butyl  | alcohol   |       |           |
| RT=        | 01:51.1     | Fit=      | 91.7  | 0.026 ppb |
| #9         | 1-Butene,   | 3-methyl- |       |           |
| RT=        | 01:53.0     | Net=      | 76    |           |
| #10        | 2-Methyl-1  | 1-butene  |       |           |
| RT=        | 01:53.0     | Net=      | 76    |           |

| 114.4            |                         |                    |
|------------------|-------------------------|--------------------|
| #11              | Methylene Chloride      |                    |
| RT=              | 01:54.3 Fit=            | 98.5 0.046 ppb     |
| #12              | Ethane, 1,1,2-trichlord | o-1,2,2-trifluoro- |
| RT=              | 01:56.0 Net=            | 76                 |
| #13              | Carbon disulfide        |                    |
| RT=              | 02:00.6 Fit=            | 100 0.456 ppb      |
| #14              | vinyl acetate           |                    |
| RT=              | 02:14.2 Fit=            | 79.7 3.221 ppb     |
| #15              | 2-Butanone              | 75.7 5.221 ppo     |
| RT=              | 02:14.2 Fit=            | 99 6 4 016 pph     |
|                  |                         | 88.6 4.016 ppb     |
| #16              | Hexane                  | 0040404            |
| RT=              | 02:22.7 Fit=            | 98.1 0.494 ppb     |
| <mark>#17</mark> | Methane, isocyanato-    |                    |
| RT=              | 02:23.0 Net=            | 83                 |
| #18              | ethyl acetate           |                    |
| RT=              | 02:32.1 Fit=            | 87.7 0.076 ppb     |
| #19              | chloroform              |                    |
| RT=              | 02:41.5 Fit=            | 83.4 0.001 ppb     |
| #20              | tetrahydrofuran         |                    |
| RT=              | 02:46.7 Fit=            | 76.7 0.005 ppb     |
| #21              | TRIS HAPSITE IS #1      |                    |
| RT=              | 02:55.0 Net=            | 95                 |
| #22              | Tris 213                | 33                 |
| RT=              | 02:55.2 Fit=            | 52.6 10.40 ppm     |
| #23              | Tris 69                 | 32.0 10.40 ppm     |
| RT=              | 02:55.2 Fit=            | 52.6 10.40 ppm     |
| #24              |                         | 32.0 10.40 ppm     |
| -                | 1,1,1-trichloroethane   | 00.000.000         |
| RT=              | 03:02.5 Fit=            | 86.6 0.002 ppb     |
| #25              | Benzene                 | 22.2.2.2.2         |
| RT=              | 03:18.2 Fit=            | 99.9 0.362 ppb     |
| #26              | Carbon Tetrachloride    |                    |
| RT=              | 03:23.4 Fit=            | 99.9 0.034 ppb     |
| #27              | Cyclohexane             |                    |
| RT=              | 03:28.6 Fit=            | 99.7 0.115 ppb     |
| #28              | isooctane               |                    |
| RT=              | 04:04.3 Fit=            | 95.5 0.009 ppb     |
| #29              | bromodichloromethar     | ne                 |
| RT=              | 04:12.8 Fit=            | 93.6 0.001 ppb     |
| #30              | methyl methacrylate     |                    |
| RT=              | 04:12.8 Fit=            | 100 0.157 ppb      |
| #31              | 2-Propenoic acid, 2-m   |                    |
| RT=              | 04:14.0 Net=            | 84                 |
| #32              | Heptane                 |                    |
| RT=              | 04:18.0 Fit=            | 98.6 0.104 ppb     |
| #33              | Methyl Isobutyl Keton   |                    |
| #33<br>RT=       | 04:56.7 Fit=            | 98.8 0.229 ppb     |
|                  |                         | 30.0 U.ZZ3 PPD     |
| #34              | Cyclohexane, methyl-    |                    |

| RT=              | 04:59.0           | Net=         |       | 93   |           |
|------------------|-------------------|--------------|-------|------|-----------|
| #35              |                   | loroethane   |       |      |           |
| RT=              | 05:36.6           |              |       | 88.3 | 0.001 ppb |
| #36              | Toluene           |              |       |      |           |
| RT=              | 06:10.1           | Fit=         |       | 99.9 | 2.604 ppb |
| #37              | 2-Hexanor         |              |       | 55.5 | pp.       |
| RT=              | 06:44.5           |              |       | 82 7 | 0.002 ppb |
| #38              | Octane            | 110          |       | 02.7 | 0.002 ppb |
| RT=              | 06:57.0           | Net=         | 86.0* |      |           |
| #39              |                   | nloromethar  |       |      |           |
| RT=              | 07:14.8           |              |       | 77 3 | 0.000 ppb |
| #40              | Octane            | 110-         |       | 77.5 | 0.000 ppb |
| RT=              | 08:08.0           | Not-         |       | 92   |           |
| #41              | Tetrachlor        |              |       | 22   |           |
| RT=              | 08:09.3           |              |       | 01   | 0.002 ppb |
| #42              | Furfural          | וו–          |       | 91   | 0.002 ppb |
| #42<br>RT=       | 08:13.0           | Not-         |       | 79   |           |
| #43              |                   | net=         |       | 79   |           |
| #43<br>RT=       | Nonane<br>08:49.0 | Not          | 76.0* |      |           |
|                  |                   | Net=         | 76.0  |      |           |
| #44<br>RT=       | Octane            | Not          | 05.0* |      |           |
|                  | 09:06.0           |              | 85.0* |      |           |
| #45              | chloroben         |              |       | 00.7 | 0.002     |
| RT=              | 09:21.6           |              |       | 89.7 | 0.002 ppb |
| #46              |                   | e, N,N-dimet | thyl- |      |           |
| RT=              | 09:35.0           | Net=         |       | 99   |           |
| #47              | BPFB_248          |              |       | 0    |           |
| RT=              | 09:46.9           | Fit=         |       | 97.9 | 5.350 ppm |
| #48              | BPFB_167          |              |       |      |           |
| RT=              | 09:46.9           | Fit=         |       | 97.9 | 5.350 ppm |
| #49              | BPFB_117          |              |       |      |           |
| RT=              | 09:46.9           | Fit=         |       | 97.6 | 5.350 ppm |
| #50              | BPFB_98           |              |       |      |           |
| RT=              | 09:46.9           |              |       | 97.6 | 5.350 ppm |
| <b>#51</b>       | BPFB HAPS         |              |       |      |           |
| RT=              | 09:47.0           |              |       | 97   |           |
| #52              | Ethylbenze        |              |       |      |           |
| RT=              | 10:00.5           | Fit=         |       | 99.7 | 0.961 ppb |
| <b>#53</b>       | p-Xylene          |              |       |      |           |
| RT=              | 10:18.0           | Net=         | 98.0* |      |           |
| #54              | o-Xylene          |              |       |      |           |
| RT=              |                   | Net=         | 95.0* |      |           |
| <b>#55</b>       | m&p-xyler         |              |       |      |           |
| RT=              | 10:18.3           | Fit=         |       | 99.9 | 1.555 ppb |
| #56              | Nonane            |              |       |      |           |
| RT=              | 10:31.0           | Net=         | 87.0* |      |           |
| <mark>#57</mark> | styrene           |              |       |      |           |
| RT=              | 10:50.8           | Fit=         |       | 99.4 | 0.077 ppb |

| #58         | Styrene     |                            |          |      |           |
|-------------|-------------|----------------------------|----------|------|-----------|
| RT=         | 10:52.0     | Net=                       |          | 84   |           |
| #59         | p-Xylene    | NCL-                       |          | 04   |           |
| RT=         | 11:00.0     | Net=                       | 94.0*    |      |           |
|             |             | net=                       | 94.0     |      |           |
| #60         | o-xylene    | F'I                        |          | 00.6 | 0.575     |
| RT=         | 11:00.2     | FIT=                       |          | 99.6 | 0.575 ppb |
| #61         | n-Nonane    |                            |          | 00.6 | 0.000     |
| RT=         | 11:34.8     | Fit=                       |          | 99.6 | 0.022 ppb |
| #62         | Nonane      |                            |          |      |           |
| RT=         | 11:35.0     | Net=                       |          | 92   |           |
| #63         | cumene      |                            |          |      |           |
| RT=         | 11:56.9     | Fit=                       |          | 99.8 | 0.019 ppb |
| #64         |             | 1-methyletl                |          |      |           |
| RT=         | 11:57.0     | Net=                       | 88.0*    |      |           |
| #65         | Benzaldeh   | yde                        |          |      |           |
| RT=         | 12:28.0     | Net=                       |          | 93   |           |
| #66         | .alphaPin   | ene                        |          |      |           |
| RT=         | 12:30.0     | Net=                       | 89.0*    |      |           |
| #67         | propyl ber  | zene                       |          |      |           |
| RT=         | 12:43.9     | Fit=                       |          | 99.1 | 0.061 ppb |
| #68         | Benzene, p  | propyl-                    |          |      |           |
| RT=         | 12:44.0     |                            |          | 82   |           |
| #69         | 4-ethyltolu |                            |          |      |           |
| RT=         | 12:57.5     |                            |          | 99.7 | 0.481 ppb |
| #70         |             | L-ethyl-3-me               | ethvl-   |      |           |
| RT=         | 12:58.0     |                            | 94.0*    |      |           |
| <b>#71</b>  |             | 1-methylet                 | <u> </u> |      |           |
| RT=         | 12:58.0     |                            | 91.0*    |      |           |
| #72         |             | ethylbenzer                |          |      |           |
| RT=         | 13:06.9     | -                          |          | 98 4 | 0.214 ppb |
| #73         |             | L <mark>,3,5-trimet</mark> | hvl-     | 30.1 | 0.211 pps |
| RT=         | 13:07.0     |                            | 92.0*    |      |           |
| #74         | Phenol      | IVC (-                     | J2.0     |      |           |
| RT=         | 13:14.0     | Not-                       | 97.0*    |      |           |
| #75         |             | L-ethyl-4-me               |          |      |           |
| RT=         | 13:23.0     |                            | 80.0*    |      |           |
| #76         |             |                            |          |      |           |
|             |             | L,2,4-trimet               | 79.0*    |      |           |
| RT=         | 13:23.0     |                            |          |      | )<br>     |
| #77<br>DT-  | 13:31.0     | 1]heptane                  | , 0,0-0  |      | iyi-Z     |
| RT=         |             |                            |          | 75   |           |
| #78         |             | ethylbenzer<br>Le:+        | ie       | 100  | 0.713     |
| RT=         | 13:43.7     |                            | la I     | 100  | 0.712 ppb |
| #79<br>p.T. |             | L,3,5-trimet               |          |      |           |
| RT=         | 13:44.0     |                            | 95.0*    |      |           |
| #80         | 1,3-dichlor |                            |          | 00 = | 0.005     |
| RT=         | 14:00.5     |                            |          | 99.7 | 0.025 ppb |
| #81         | 1,4-dichlor | robenzene                  |          |      |           |

# **BH Air Sample 1**

| RT=        | 14:00.5     | Fit=                       |       | 99.2 | 0.014 ppb |
|------------|-------------|----------------------------|-------|------|-----------|
| #82        | Benzene, 1  | L,4-dichloro               | -     |      |           |
| RT=        | 14:01.0     | Net=                       | 80.0* |      |           |
| #83        | Benzene, 1  | L <mark>,2-dichloro</mark> | -     |      |           |
| RT=        | 14:01.0     | Net=                       | 78.0* |      |           |
| #84        | benzyl chlo | oride                      |       |      |           |
| RT=        | 14:06.8     | Fit=                       |       | 80.3 | 0.018 ppb |
| #85        | 3-Carene    |                            |       |      |           |
| RT=        | 14:18.0     | Net=                       |       | 77   |           |
| #86        | Benzene, (  | 1-methyletl                | hyl)- |      |           |
| RT=        | 14:22.0     | Net=                       | 84.0* |      |           |
| #87        | Benzene, 1  | L,3,5-trimet               | hyl-  |      |           |
| RT=        | 14:22.0     | Net=                       | 90.0* |      |           |
| #88        | 1-Hexanol,  | , 2-ethyl-                 |       |      |           |
| RT=        | 14:28.0     | Net=                       | 91.0* |      |           |
| #89        | 1,2-dichlor | obenzene                   |       |      |           |
| RT=        | 14:30.8     | Fit=                       |       | 96.9 | 0.001 ppb |
| #90        | Benzene, 2  | 2-propenyl-                |       |      |           |
| RT=        | 14:38.0     | Net=                       | 76.0* |      |           |
| #91        | Limonene    |                            |       |      |           |
| RT=        | 14:40.0     | Net=                       | 91.0* |      |           |
| #92        | Acetopher   | none                       |       |      |           |
| RT=        | 15:00.0     | Net=                       | 85.0* |      |           |
| #93        | 1-Propano   | <mark>ne, 1-phen</mark> y  | /l-   |      |           |
| RT=        | 15:00.0     | Net=                       | 82.0* |      |           |
| #94        | Benzene, t  | ert-butyl-                 |       |      |           |
| RT=        | 15:08.0     | Net=                       | 79.0* |      |           |
| #95        | Dodecane    |                            |       |      |           |
| RT=        | 15:24.0     | Net=                       | 95.0* |      |           |
| #96        | Dodecane    |                            |       |      |           |
| RT=        | 16:15.0     | Net=                       | 94.0* |      |           |
| <b>#97</b> | Naphthale   | ne                         |       |      |           |
| RT=        | 17:35.0     | Net=                       |       | 89   |           |
| #98        | Dodecane    |                            |       |      |           |
| RT=        | 17:59.0     | Net=                       | 93.0* |      |           |

# **BH Air Sample 2**

Unknown Identification Report Date: 01/23/14 Time: 12:30:12

Calibration Method:

/Haps/Method/Analyze/Concentrator/gc\_cb5m.mth

Tune File: default.tun

Method Description: Use/Limitations:

The methods described in this procedure provides analysis of chemicals in air in air utilizing the tri-bed concentrator tube with the HAPSITE SMART portable GC/MS connected to the laptop computer. The gc\_cb5m (5 minute sampling time) and The gc\_cb20m (20 minute sampling time) methods are used to determine chemical concentration levels in the ppt range. The 20 minute method provides the best sensitivity.

#### Data File:

/Haps/Data/Analyze/Concentrator/gc\_cb5m/gc\_cb5m\_20140123\_005.hps Data Info:

| #1  | BPFB_98  |      |      |           |
|-----|----------|------|------|-----------|
| RT= | 07:58.1  | Fit= | 99.5 | 5.350 ppm |
| #2  | BPFB_117 |      |      |           |
| RT= | 07:59.2  | Fit= | 99.6 | 5.350 ppm |

# **BH Air Sample 3**

Unknown Identification Report Date: 01/23/14 Time: 13:07:15

Calibration Method:

/Haps/Method/Analyze/Concentrator/gc\_cb5m.mth

Tune File: default.tun

Method Description: Use/Limitations:

The methods described in this procedure provides analysis of chemicals in air in air utilizing the tri-bed concentrator tube with the HAPSITE SMART portable GC/MS connected to the laptop computer. The gc\_cb5m (5 minute sampling time) and The gc\_cb20m (20 minute sampling time) methods are used to determine chemical concentration levels in the ppt range. The 20 minute method provides the best sensitivity.

#### Data File:

/Haps/Data/Analyze/Concentrator/gc\_cb5m/gc\_cb5m\_20140123\_006.hps Data Info:

| #1  | BPFB_117 |      |      |           |
|-----|----------|------|------|-----------|
| RT= | 07:58.3  | Fit= | 99.6 | 5.350 ppm |
| #2  | BPFB_98  |      |      |           |
| RT= | 07:58.3  | Fit= | 99.5 | 5.350 ppm |

## **BH Soil Sample 1**

Unknown Identification Report
Date: 01/13/14 Time: 13:24:28

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to

 $150\ \text{C}$  then ramp at 10 C/min to 180 C.

Open loop

Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140113\_132428\_034.hps

|             |            |             |            |           | EPA Residential Soil      | % of Regulatory |
|-------------|------------|-------------|------------|-----------|---------------------------|-----------------|
| Valid GPS I | nformation | Not Availab | le         |           | Standard                  | Limit           |
| #1          | Benzene, f | luoro-      |            |           |                           |                 |
| RT=         | 02:57.0    | Net=        | 96         |           |                           |                 |
| #2          | Chloroben  | zene-d5     |            |           |                           |                 |
| RT=         | 07:32.0    | Net=        | 93         |           |                           |                 |
| #3          | 117_BPFB   |             |            |           |                           |                 |
| RT=         | 07:58.6    | Fit=        | 99.5       | 4.820 ppm | HAPSITE Internal Standard |                 |
| #4          | 98_BPFB    |             |            |           |                           |                 |
| RT=         | 07:58.6    | Fit=        | 99.5       | 4.820 ppm | HAPSITE Internal Standard |                 |
| #5          | 117_BPFB   |             |            |           |                           |                 |
| RT=         | 07:58.6    | Fit=        | 99.6       | 4.820 ppm | HAPSITE Internal Standard |                 |
| #6          | 98_BPFB    |             |            |           |                           |                 |
| RT=         | 07:58.6    | Fit=        | 99.6       | 4.820 ppm | HAPSITE Internal Standard |                 |
| #7          | BPFB HAPS  | SITE IS # 2 |            |           |                           |                 |
| RT=         | 08:00.0    | Net=        | 97         |           | HAPSITE Internal Standard |                 |
| #8          | 1,4-Dichlo | robenzene-I | <b>)</b> 4 |           |                           |                 |
| RT=         | 10:37.0    | Net=        | 88         |           |                           |                 |

## **BH Soil Sample 2**

Unknown Identification Report
Date: 01/13/14 Time: 13:49:39

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to 150 C then ramp at 10 C/min to 180 C.

Open loop

Data File:

 $/ Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140113\_134939\_035.hps$ 

|             |                     |       |           | EPA Residential Soil      | % of Regulatory |
|-------------|---------------------|-------|-----------|---------------------------|-----------------|
| Valid GPS I | nformation Not Avai | lable |           | Standard                  | Limit           |
| #1          | Benzene, fluoro-    |       |           |                           |                 |
| RT=         | 02:57.0 Net=        | 96    |           |                           |                 |
| #2          | Chlorobenzene-d5    |       |           |                           |                 |
| RT=         | 04:37.0 Net=        | 81    |           |                           |                 |
| #3          | Chlorobenzene-d5    |       |           |                           |                 |
| RT=         | 07:31.0 Net=        | 91    |           |                           |                 |
| #4          | BPFB HAPSITE IS # 2 | 2     |           |                           |                 |
| RT=         | 07:58.0 Net=        | 97    |           | HAPSITE Internal Standard |                 |
| #5          | 117_BPFB            |       |           |                           |                 |
| RT=         | 07:58.1 Fit=        | 99.5  | 4.820 ppm | HAPSITE Internal Standard |                 |
| #6          | 98_BPFB             |       |           |                           |                 |
| RT=         | 07:58.1 Fit=        | 99.5  | 4.820 ppm | HAPSITE Internal Standard |                 |
| #7          | 117_BPFB            |       |           |                           |                 |
| RT=         | 07:58.1 Fit=        | 99.5  | 4.820 ppm | HAPSITE Internal Standard |                 |
| #8          | 98_BPFB             |       |           |                           |                 |
| RT=         | 07:58.1 Fit=        | 99.5  | 4.820 ppm | HAPSITE Internal Standard |                 |
| #9          | 1,4-Dichlorobenzer  | ie-D4 |           |                           |                 |
| RT=         | 10:43.0 Net=        | 89    |           |                           |                 |

## **BH Soil Sample 3**

Unknown Identification Report
Date: 01/14/14 Time: 08:28:53

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to 150 C then ramp at 10 C/min to 180 C.

Open loop

Data File:

 $/ Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140114\_082853\_037.hps$ 

| Valid GPS I | nformation  | Not Availah   | ما    |           |   | EPA Residential Soil<br>Standard | % of Regulatory<br>Limit |
|-------------|-------------|---------------|-------|-----------|---|----------------------------------|--------------------------|
| #1          | Propyne     | 140t7 (Vallab | 10    |           |   | Staridard                        | Lillie                   |
| RT=         | 00:23.0     | Net=          | 79.0* |           |   |                                  |                          |
| #2          | Benzene, f  | luoro-        |       |           |   |                                  |                          |
| RT=         | 02:57.0     | Net=          | 96    |           |   |                                  |                          |
| #3          | Chloroben   | zene-d5       |       |           |   |                                  |                          |
| RT=         | 07:32.0     | Net=          | 93    |           |   |                                  |                          |
| #4          | BPFB HAPS   | SITE IS # 2   |       |           |   |                                  |                          |
| RT=         | 07:59.0     | Net=          | 98    |           |   | HAPSITE Internal Standard        |                          |
| #5          | 117_BPFB    |               |       |           |   |                                  |                          |
| RT=         | 07:59.4     | Fit=          | 99.7  | 4.820 ppm |   | HAPSITE Internal Standard        |                          |
| #6          | 98_BPFB     |               |       |           |   |                                  |                          |
| RT=         | 07:59.4     | Fit=          | 99.7  | 4.820 ppm |   | HAPSITE Internal Standard        |                          |
| #7          | 117_BPFB    |               |       |           |   |                                  |                          |
| RT=         | 07:59.4     | Fit=          | 99.7  | 4.820 ppm |   | HAPSITE Internal Standard        |                          |
| #8          | 98_BPFB     |               |       |           | - |                                  |                          |
| RT=         | 07:59.4     | Fit=          | 99.7  | 4.820 ppm |   | HAPSITE Internal Standard        |                          |
| #9          | 1,4-Dichlor | robenzene-l   | D4    |           |   |                                  |                          |
| RT=         | 11:08.0     | Net=          | 96    |           |   |                                  |                          |

Unknown Identification Report Date: 01/09/14 Time: 10:02:07

Calibration Method:

/Haps/Method/Volatiles.mth

Tune File: default.tun Method Description:

Use/Limitations:

The methods described in this procedure provides analysis of 74 VOC compounds

For detailed information on this method, please refer to the technical report titled "Development and Demonstration of the Performance of Composite Calibration Curves for the Analysis of Volatile Organic Compounds in Air Using the HAPSITE Smart Plus" (MacGregor 2012) prepared by Battelle for USAFSAM.

Data File:

/Haps/Data/Volatiles/VOC\_20m\_20140109\_001.hps Data Info:

|     | mormation          |             | . •   |            |
|-----|--------------------|-------------|-------|------------|
| #1  | Propyne            |             |       |            |
| RT= | 00:53.0            | Net=        | 79.0* |            |
| #2  | Cyclopropa         | ane         |       |            |
| RT= | 01:01.0            | Net=        | 82    |            |
| #3  | n-butane           |             |       |            |
| RT= | 01:29.1            | Fit=        | 98.8  | 0.948 ppb  |
| #4  | Acetone            |             |       |            |
| RT= | 01:42.7            | Fit=        | 82.5  | 18.63 ppb  |
| #5  | Isobutane          |             |       |            |
| RT= | 01:43.0            | Net=        | 87.0* |            |
| #6  | Isopropyl A        | Alcohol     |       |            |
| RT= | 01:43.0            | Net=        | 84    |            |
| #7  | isopropyl a        | alcohol     |       |            |
| RT= | 01:43.8            | Fit=        | 89.2  | 384.93 ppb |
| #8  | 1,3-Butadi         | ene, 2-meth | nyl-  |            |
| RT= | 01:49.0            | Net=        | 94.0* |            |
| #9  | Methylene Chloride |             |       |            |
| RT= | 01:55.3            | Fit=        | 95.7  | 0.220 ppb  |
| #10 | tert-butyl         | alcohol     |       |            |
| RT= | 02:03.7            | Fit=        | 91.7  | 0.017 ppb  |

| #11              | vinyl acetat | te          |       |           |
|------------------|--------------|-------------|-------|-----------|
| RT=              | 02:14.2      |             | 76.8  | 3.088 ppb |
| #12              | 2-Butanone   |             | 70.0  | 3.000 ppc |
| RT=              | 02:14.2      |             | 89 5  | 3.850 ppb |
| #13              | Hexane       |             | 03.3  | 3.030 pps |
| RT=              | 02:22.5      | Fit=        | 99.1  | 0.191 ppb |
| #14              | ethyl aceta  |             | JJ.1  | 0.131 ppb |
| RT=              | 02:32.0      |             | 93.5  | 0.315 ppb |
| #15              | chloroform   |             | 33.3  | 0.515 μμυ |
| RT=              | 02:36.2      |             | 9/1 1 | 0.043 ppb |
| #16              | tetrahydro   |             | 24.1  | 0.043 μμυ |
| #10<br>RT=       | 02:47.7      |             | 06.2  | 0.012 ppb |
| #17              | TRIS HAPSI   |             | 90.2  | 0.012 μμυ |
| #17<br>RT=       | 02:55.0      |             | 94    |           |
| #18              | Tris 69      | ivet=       | 94    |           |
|                  |              | F:1         | 70.7  | 10.40     |
| RT=              | 02:55.0      |             | /8./  | 10.40 ppm |
| #19              | 1,2-dichlor  |             | 00.7  | 0.404     |
| RT=              | 02:56.0      | FIT=        | 99.7  | 0.121 ppb |
| #20              | Tris_213     |             | -0.6  | 10.10     |
| RT=              | 02:56.0      | Fit=        | /8.6  | 10.40 ppm |
| #21              | 1-Butanol    |             |       |           |
| RT=              | 03:16.0      | Net=        | 88    |           |
| #22              | Benzene      |             |       |           |
| RT=              | 03:19.1      |             | 99.8  | 0.555 ppb |
| #23              | Carbon Tet   |             |       |           |
| RT=              | 03:24.3      |             | 99.9  | 0.075 ppb |
| #24              | Cyclohexan   |             |       |           |
| RT=              | 03:29.6      |             | 96.1  | 0.138 ppb |
| #25              | 1,2-dichlor  |             |       |           |
| RT=              | 03:52.6      | Fit=        | 98.5  | 0.031 ppb |
| #26              | isooctane    |             |       |           |
| RT=              | 04:05.2      | Fit=        | 99.8  | 0.041 ppb |
| #27              | methyl met   | thacrylate  |       |           |
| RT=              | 04:14.7      | Fit=        | 100   | 0.016 ppb |
| #28              | Heptane      |             |       |           |
| RT=              | 04:18.8      | Fit=        | 95.9  | 0.047 ppb |
| <mark>#29</mark> | Methyl Isol  | outyl Keton | e     |           |
| RT=              | 04:58.7      | Fit=        | 91.8  | 0.008 ppb |
| #30              | Toluene      |             |       |           |
| RT=              | 06:12.1      | Fit=        | 99.9  | 2.331 ppb |
| #31              | 2-Hexanon    | e           |       |           |
| RT=              | 06:48.8      | Fit=        | 96.6  | 0.002 ppb |
| #32              | dibromoch    | loromethar  | ne    |           |
| RT=              | 06:55.1      | Fit=        | 97.7  | 0.001 ppb |
| #33              | Tetrachloro  | oethylene   |       |           |
| RT=              | 08:11.5      | Fit=        | 99.2  | 0.011 ppb |
| #34              | Chlorobenz   | zene-d5     |       |           |
| -                |              |             |       |           |

| RT=        | 09:18.0     | Net=        | 83       |           |
|------------|-------------|-------------|----------|-----------|
| #35        | BPFB HAPS   |             |          |           |
| RT=        | 09:47.0     |             | 97       |           |
| #36        | BPFB 98     |             |          |           |
| RT=        | 09:47.1     | Fit=        | 99.1     | 5.350 ppm |
| #37        | BPFB 117    |             | 33.1     | 2.222 pp  |
| RT=        | 09:48.2     | Fit=        | 99.1     | 5.350 ppm |
| #38        | BPFB 167    | 110-        | <u> </u> | 3.330 ppm |
| RT=        | 09:48.2     | Fit-        | 00 1     | 5.350 ppm |
| #39        | BPFB 248    | 111-        | 33.1     | 3.330 ppm |
| RT=        | 09:48.2     | Ci+-        | 00.1     | 5.350 ppm |
| #40        | Ethylbenze  |             | 33.1     | 3.330 ppm |
| #40<br>RT= | 10:00.8     |             | 00.0     | 0 202 nnh |
|            |             |             | 99.8     | 0.282 ppb |
| #41        | m&p-xylen   |             | 00.5     | 1.100     |
| RT=        | 10:18.6     | FIL=        | 99.5     | 1.100 ppb |
| #42        | p-Xylene    |             | 00.0*    |           |
| RT=        | 10:19.0     |             | 98.0*    |           |
| #43        | 3-Heptano   |             |          |           |
| RT=        | 10:38.0     | Net=        | 77       |           |
| #44        | Styrene     |             |          |           |
| RT=        | 10:52.0     | Net=        | 93       |           |
| #45        | styrene     |             |          |           |
| RT=        | 10:52.1     | Fit=        | 99.3     | 0.079 ppb |
| #46        | o-xylene    |             |          |           |
| RT=        | 11:01.5     | Fit=        | 99.7     | 0.421 ppb |
| #47        | p-Xylene    |             |          |           |
| RT=        | 11:02.0     | Net=        | 91.0*    |           |
| #48        | Ethanol, 2- |             |          |           |
| RT=        | 11:21.0     | Net=        | 81       |           |
| <b>#49</b> | Nonane      |             |          |           |
| RT=        | 11:36.0     | Net=        | 78.0*    |           |
| #50        | Benzene, (  | 1-methyletl | hyl)-    |           |
| RT=        | 11:58.0     | Net=        | 76       |           |
| <b>#51</b> | 1-Butanol,  | 3-methyl-   |          |           |
| RT=        | 12:17.0     | Net=        | 76       |           |
| #52        | Benzaldeh   | yde         |          |           |
| RT=        | 12:29.0     | Net=        | 93       |           |
| <b>#53</b> | Benzene, p  | ropyl-      |          |           |
| RT=        | 12:45.0     | Net=        | 83       |           |
| #54        | propyl ben  | zene        |          |           |
| RT=        | 12:45.1     | Fit=        | 100      | 0.051 ppb |
| #55        | 4-ethyltolu | ene         |          |           |
| RT=        | 12:58.8     | Fit=        | 99.6     | 0.447 ppb |
| #56        | Benzene, 1  | ,2,4-trimet |          |           |
| RT=        | 12:59.0     |             | 93.0*    |           |
| #57        |             | 1-methyletl |          |           |
| RT=        | 12:59.0     | <u> </u>    | 92.0*    |           |
|            |             |             |          |           |

# **KE Air Sample 1**

| #58              | Benzene, 1,3,5-trimet     | hvl-        |           |  |  |
|------------------|---------------------------|-------------|-----------|--|--|
| RT=              | 13:08.0 Net=              | 93.0*       |           |  |  |
| #59              | 1,3,5-trimethylbenzene    |             |           |  |  |
| RT=              | 13:08.2 Fit=              |             | 0.204 ppb |  |  |
| #60              | 1,2,4-trimethylbenzer     |             |           |  |  |
| RT=              | 13:44.8 Fit=              |             | 0.653 ppb |  |  |
| #61              | Benzene, 1,3,5-trimet     |             |           |  |  |
| RT=              | 13:45.0 Net=              | 98.0*       |           |  |  |
| #62              | 1,4-Dichlorobenzene-      | D4          |           |  |  |
| RT=              | 13:58.0 Net=              | 90          |           |  |  |
| #63              | 1,2-dichlorobenzene       |             |           |  |  |
| RT=              | 14:00.4 Fit=              | 98          | 0.007 ppb |  |  |
| #64              | 1,4-dichlorobenzene       |             |           |  |  |
| RT=              | 14:00.4 Fit=              | 94.9        | 0.005 ppb |  |  |
| #65              | 1,3-dichlorobenzene       |             |           |  |  |
| RT=              | 14:00.4 Fit=              | 96.3        | 0.009 ppb |  |  |
| #66              | Decane                    |             |           |  |  |
| RT=              | 14:07.0 Net=              | 85.0*       |           |  |  |
| #67              | benzyl chloride           |             |           |  |  |
| RT=              | 14:14.0 Fit=              | 80          | 0.001 ppb |  |  |
| #68              | Benzene, 1,3,5-trimethyl- |             |           |  |  |
| RT=              | 14:23.0 Net=              | 90.0*       |           |  |  |
| #69              | 1-Hexanol, 2-ethyl-       |             |           |  |  |
| RT=              | 14:29.0 Net=              | 89.0*       |           |  |  |
| #70              | Limonene                  |             |           |  |  |
| RT=              | 14:40.0 Net=              | 95.0*       |           |  |  |
| <b>#71</b>       | Acetophenone              |             |           |  |  |
| RT=              | 15:01.0 Net=              | 87.0*       |           |  |  |
| #72              | 1-Propanone, 1-pheny      | /I-         |           |  |  |
| RT=              | 15:01.0 Net=              | 81.0*       |           |  |  |
| <mark>#73</mark> | Benzene, 1,2-diethyl-     |             |           |  |  |
| RT=              | 15:04.0 Net=              | 75.0*       |           |  |  |
| #74              | Benzene, tert-butyl-      |             |           |  |  |
| RT=              | 15:35.0 Net=              | 79.0*       |           |  |  |
| <mark>#75</mark> | Benzene, 1-methyl-4-      | (1-methylet | hyl)-     |  |  |
| RT=              | 15:46.0 Net=              | 82.0*       |           |  |  |
| #76              | Undecane                  |             |           |  |  |
| RT=              | 16:11.0 Net=              | 75          |           |  |  |
| <b>#77</b>       | Benzene, 1,2,3,4-tetra    | methyl-     |           |  |  |
| RT=              | 16:27.0 Net=              | 90.0*       |           |  |  |
| #78              | Dodecane                  |             |           |  |  |
| RT=              | 18:00.0 Net=              | 82          |           |  |  |

### **KE Air Sample 2**

Unknown Identification Report
Date: 01/23/14 Time: 13:44:41

Calibration Method:

/Haps/Method/Analyze/Concentrator/gc\_cb5m.mth

Tune File: default.tun

Method Description: Use/Limitations:

The methods described in this procedure provides analysis of chemicals in air in air utilizing the tri-bed concentrator tube with the HAPSITE SMART portable GC/MS connected to the laptop computer. The gc\_cb5m (5 minute sampling time) and The gc\_cb20m (20 minute sampling time) methods are used to determine chemical concentration levels in the ppt range. The 20 minute method provides the best sensitivity.

#### Data File:

/Haps/Data/Analyze/Concentrator/gc\_cb5m/gc\_cb5m\_20140123\_007.hps Data Info:

| #1  | BPFB_98  |      |      |           |
|-----|----------|------|------|-----------|
| RT= | 07:58.2  | Fit= | 99.4 | 5.350 ppm |
| #2  | BPFB_117 |      |      |           |
| RT= | 07:59.2  | Fit= | 99.5 | 5.350 ppm |

## **KE Soil Sample 1**

Unknown Identification Report Date: 01/14/14 Time: 08:54:41

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to

150 C then ramp at 10 C/min to 180 C.

Open loop

### Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140114\_085441\_038.hps Data Info:

| #1        | Benzene, f          | luoro-      |       |           |
|-----------|---------------------|-------------|-------|-----------|
| RT=       | 00:19.0             | Net=        | 84    | l l       |
| #2        | Propyne             |             |       |           |
| RT=       | 01:10.0             | Net=        | 79.0* |           |
| #3        | Benzene, f          | luoro-      |       |           |
| RT=       | 02:58.0             | Net=        | 96    | 5         |
| #4        | BPFB HAPS           | SITE IS # 2 |       |           |
| RT=       | 05:38.0             | Net=        | 75    | 5         |
| <b>#5</b> | Chloroben           | zene-d5     |       |           |
| RT=       | 07:34.0             | Net=        | 92    | 2         |
| #6        | 98_BPFB             |             |       |           |
| RT=       | 07:59.6             | Fit=        | 99.6  | 4.820 ppm |
| <b>#7</b> | 98_BPFB             |             |       |           |
| RT=       | 07:59.6             | Fit=        | 99.7  | 4.820 ppm |
| #8        | 117_BPFB            |             |       |           |
| RT=       | 08:00.7             | Fit=        | 99.6  | 4.820 ppm |
| #9        | 117_BPFB            |             |       |           |
| RT=       | 08:00.7             | Fit=        | 99.7  | 4.820 ppm |
| #10       | BPFB HAPSITE IS # 2 |             |       |           |
| RT=       | 08:01.0             | Net=        | 97    | 7         |
| #11       | 1,4-Dichlor         | robenzene-l | D4    |           |
| RT=       | 10:47.0             | Net=        | 84    | 1         |

## **KE Soil Sample 2**

Unknown Identification Report Date: 01/14/14 Time: 09:14:47

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slls.mth

Tune File: default.tun

Method Description:

Headspace method for Chemical

Agents and selected ITF compounds in

media other than water.

Significant matrix effects WILL OCCUR and CANNOT be controlled for. This method is only Semi-Quantitative Scan range 41 - 300 for 15 min.

Column 60 for 1 min ramp at 20 C/min to 150 C then ramp at 10 C/min to 180 C.

Open loop

### Data File:

/Haps/Data/Analyze/Headspace/hs\_slls/hs\_slls\_20140114\_091447\_039.hps Data Info:

| #1         | Benzene, f  | luoro-      |      |           |
|------------|-------------|-------------|------|-----------|
| RT=        | 02:51.0     | Net=        | 96   |           |
| #2         | Chloroben   | zene-d5     |      |           |
| RT=        | 07:27.0     | Net=        | 93   |           |
| #3         | 117_BPFB    |             |      |           |
| RT=        | 07:54.8     | Fit=        | 99.7 | 4.820 ppm |
| #4         | 98_BPFB     |             |      |           |
| RT=        | 07:54.8     | Fit=        | 99.7 | 4.820 ppm |
| <b>#5</b>  | 117_BPFB    |             |      |           |
| RT=        | 07:54.8     | Fit=        | 99.7 | 4.820 ppm |
| #6         | 98_BPFB     |             |      |           |
| RT=        | 07:54.8     | Fit=        | 99.7 | 4.820 ppm |
| <b>#</b> 7 | BPFB HAPS   | SITE IS # 2 |      |           |
| RT=        | 07:55.0     | Net=        | 98   |           |
| #8         | 1,4-Dichlor | robenzene-l | D4   |           |
| RT=        | 10:26.0     | Net=        | 76   |           |
| <b>#9</b>  | 1,4-Dichlo  |             |      |           |
| RT=        | 11:06.0     | Net=        | 96   |           |

### **HAPSITE Concentrator**

Unknown Identification Report Date: 01/23/14 Time: 10:09:05

Calibration Method:

/Haps/Method/Analyze/Concentrator/gc\_cb5m.mth

Tune File: default.tun

Method Description: Use/Limitations:

The methods described in this procedure provides analysis of chemicals in air in air utilizing the tri-bed concentrator tube with the HAPSITE SMART portable GC/MS connected to the laptop computer. The gc\_cb5m (5 minute sampling time) and The gc\_cb20m (20 minute sampling time) methods are used to determine chemicals concentration levels in the ppt range. The 20 minute method provides the best sensitivity.

#### Data File:

/Haps/Data/Analyze/Concentrator/gc\_cb5m/gc\_cb5m\_20140123\_001.hps Data Info:

| #1  | BPFB_98      |                |
|-----|--------------|----------------|
| RT= | 08:00.0 Fit= | 99.9 5.350 ppm |
| #2  | BPFB_117     |                |
| RT= | 08:01.0 Fit= | 99.9 5.350 ppm |

### **Headspace Concentrator Blank**

Unknown Identification Report Date: 01/07/14 Time: 13:12:09

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_cbwqc.mth

Tune File: default.tun

Method Description:

This SOP describes the process for the sampling and analysis of the EPA 8260 compounds in water using the Tri-bed concentrator tube with the HAPSITE portable GC/MS using the HAPSITE Method Data Acquisition screen. Using the Method Data Acquisition screen will allow the Cal/Quant report to be generated automatically. The purpose of this method is to provide a quantitative analysis for the 8260 compounds and trihalomethanes. This method is set to run with the NEG pump on. This method is to be used with the hs\_cbwcl and the hs\_cbwqc procedures.

The full EPA 8260 method run is 25 minutes. The quantitative analysis range is between 1 and 100 ppb. Internal standards and surrogates are added to the sample to determine the percent recovery. This will provide an indication of any matrix effect and provides the best mechanism to adjust/correct for it. The more similar the chemical properties between the analyte of interest and the surrogates the better the adjustment for the matrix effect. Quantitative rep

Data File:

/Haps/Data/Analyze/Headspace/hs\_cbwqc/hs\_cbwqc\_20140107\_001.hps Data Info:

| #1  | Chloroform   |    |            |  |
|-----|--------------|----|------------|--|
| RT= | 02:13.5 Fit= | 98 | 0.005 mg/L |  |

# **Headspace Concentrator Blank**

| #2  | Fluoroben              | zene     |      |            |  |
|-----|------------------------|----------|------|------------|--|
| RT= | 02:53.0                | Fit=     | 97.4 | 0.013 ppm  |  |
| #3  | Toluene ov             | er 80ppb |      |            |  |
| RT= | 04:44.6                | Fit=     | 98.4 | 0.000 mg/L |  |
| #4  | Toluene                |          |      |            |  |
| RT= | 04:45.7                | Fit=     | 98.4 | 0.000 mg/L |  |
| #5  | Chloroben              | zene-d5  |      |            |  |
| RT= | 07:26.7                | Fit=     | 98.9 | 0.013 ppm  |  |
| #6  | 98_BPFB                |          |      |            |  |
| RT= | 08:04.3                | Fit=     | 99.6 | 0.025 ppm  |  |
| #7  | 117_BPFB               |          |      |            |  |
| RT= | 08:04.3                | Fit=     | 99.6 | 0.025 ppm  |  |
| #8  | 167_BPFB               |          |      |            |  |
| RT= | 08:04.3                | Fit=     | 87.6 | 0.025 ppm  |  |
| #9  | 246_BPFB               |          |      |            |  |
| RT= | 08:04.3                | Fit=     | 99.6 | 0.025 ppm  |  |
| #10 | 1,4-Dichlorobenzene-d4 |          |      |            |  |
| RT= | 14:42.5                | Fit=     | 99.4 | 0.013 ppm  |  |

### **Headspace Sample Loop Blank**

Unknown Identification Report Date: 01/07/14 Time: 15:26:05

Calibration Method:

/Haps/Method/Analyze/Headspace/hs\_slwqc.mth

Tune File: default.tun

Method Description: Use/Limitations:

The performance standard is comprised of four compounds which cover the chromatographic range of the VOC's that are applicable to the method. It is designed to evaluate the retention time, area counts and spectral quality of the four compounds. The established retention times validate that the GC flow rate has been standardized and that the GC is functioning correctly. The area counts check the overall sensitivity of the system including the proper transfer of sample from the Headspace sampler. The spectral quality checks that the MS is tuned correctly and functioning correctly. This procedure also runs a system blank and can be used to check for carryover or contamination in the system.

### Data File:

/Haps/Data/Analyze/Headspace/hs\_slwqc/hs\_slwqc\_20140107\_001.hps Data Info:

| #1  | Benzene, f             | luoro-   |      |            |   |
|-----|------------------------|----------|------|------------|---|
| RT= | 02:54.6                | Fit=     | 99.6 | 58.37 ug/L |   |
| #2  | Chloroben              | zene-d5  |      |            |   |
| RT= | 07:29.1                | Fit=     | 79.2 | 38.47 ug/L |   |
| #3  | HAPSITE IS             | # 2 BPFB |      |            |   |
| RT= | 07:56.3                | Fit=     | 99.5 | 140.68 ug/ | L |
| #4  | 1,4-Dichlorobenzene-D4 |          |      |            |   |
| RT= | 11:06.2                | Fit=     | 99.6 | 62.72 ug/L |   |

Unknown Identification Report Date: 01/09/14 Time: 10:02:07

Calibration Method:

/Haps/Method/Volatiles.mth

Tune File: default.tun Method Description:

Use/Limitations:

The methods described in this procedure provides analysis of 74 VOC compounds

For detailed information on this method, please refer to the technical report titled "Development and Demonstration of the Performance of Composite Calibration Curves for the Analysis of Volatile Organic Compounds in Air Using the HAPSITE Smart Plus" (MacGregor 2012) prepared by Battelle for USAFSAM.

Data File:

/Haps/Data/Volatiles/VOC\_20m\_20140109\_001.hps

Data Info:

| #1         | Propyne            |             |       |            |   |
|------------|--------------------|-------------|-------|------------|---|
| RT=        | 00:53.0            | Net=        | 79.0* |            |   |
| #2         | Cyclopropa         | ane         |       |            |   |
| RT=        | 01:01.0            | Net=        | 82    |            |   |
| #3         | n-butane           |             |       |            |   |
| RT=        | 01:29.1            | Fit=        | 98.8  | 0.948 ppb  |   |
| #4         | Acetone            |             |       |            |   |
| RT=        | 01:42.7            | Fit=        | 82.5  | 18.63 ppb  |   |
| <b>#</b> 5 | Isobutane          |             |       |            |   |
| RT=        | 01:43.0            | Net=        | 87.0* |            |   |
| #6         | Isopropyl Alcohol  |             |       |            |   |
| RT=        | 01:43.0            | Net=        | 84    |            |   |
| <b>#7</b>  | isopropyl alcohol  |             |       |            |   |
| RT=        | 01:43.8            | Fit=        | 89.2  | 384.93 ppb | ) |
| #8         | 1,3-Butadi         | ene, 2-meth | nyl-  |            |   |
| RT=        | 01:49.0            | Net=        | 94.0* |            |   |
| <b>#9</b>  | Methylene Chloride |             |       |            |   |
| RT=        | 01:55.3            | Fit=        | 95.7  | 0.220 ppb  |   |
| #10        | tert-butyl         | alcohol     |       |            |   |

| RT=              | 02:03.7 Fit=                       | 91.7 0.017 ppb |
|------------------|------------------------------------|----------------|
| #11              | vinyl acetate                      |                |
| RT=              | 02:14.2 Fit=                       | 76.8 3.088 ppb |
| #12              | 2-Butanone                         |                |
| RT=              | 02:14.2 Fit=                       | 89.5 3.850 ppb |
| #13              | Hexane                             |                |
| RT=              | 02:22.5 Fit=                       | 99.1 0.191 ppb |
| #14              | ethyl acetate                      |                |
| RT=              | 02:32.0 Fit=                       | 93.5 0.315 ppb |
| #15              | chloroform                         |                |
| RT=              | 02:36.2 Fit=                       | 94.1 0.043 ppb |
| #16              | tetrahydrofuran                    |                |
| RT=              | 02:47.7 Fit=                       | 96.2 0.012 ppb |
| #17              | TRIS HAPSITE IS #1                 |                |
| RT=              | 02:55.0 Net=                       | 94             |
| #18              | Tris_69                            |                |
| RT=              | 02:55.0 Fit=                       | 78.7 10.40 ppm |
| <mark>#19</mark> | 1,2-dichloroethane                 |                |
| RT=              | 02:56.0 Fit=                       | 99.7 0.121 ppb |
| #20              | Tris_213                           |                |
| RT=              | 02:56.0 Fit=                       | 78.6 10.40 ppm |
| #21              | 1-Butanol                          |                |
| RT=              | 03:16.0 Net=                       | 88             |
| #22              | Benzene                            |                |
| RT=              | 03:19.1 Fit=                       | 99.8 0.555 ppb |
| #23              | Carbon Tetrachlorid                |                |
| RT=              | 03:24.3 Fit=                       | 99.9 0.075 ppb |
| #24              | Cyclohexane                        |                |
| RT=              | 03:29.6 Fit=                       | 96.1 0.138 ppb |
| #25              | 1,2-dichloropropane                |                |
| RT=              | 03:52.6 Fit=                       | 98.5 0.031 ppb |
| #26              | isooctane                          |                |
| RT=              | 04:05.2 Fit=                       | 99.8 0.041 ppb |
| #27<br>DT-       | methyl methacrylat                 |                |
| RT=              | 04:14.7 Fit=                       | 100 0.016 ppb  |
| #28<br>pt-       | Heptane                            | 05 0 0 047 nnh |
| RT=<br>#29       | 04:18.8 Fit=  Methyl Isobutyl Keto | 95.9 0.047 ppb |
| #29<br>RT=       | 04:58.7 Fit=                       |                |
| #30              | Toluene                            | 91.8 0.008 ppb |
| #50<br>RT=       | 06:12.1 Fit=                       | 99.9 2.331 ppb |
| #31              | 2-Hexanone                         | 33.3 2.331 ppp |
| RT=              | 06:48.8 Fit=                       | 96.6 0.002 ppb |
| #32              | dibromochlorometh                  |                |
| RT=              | 06:55.1 Fit=                       | 97.7 0.001 ppb |
| #33              | Tetrachloroethylene                |                |
| RT=              | 08:11.5 Fit=                       | 99.2 0.011 ppb |
| •                | 00.11.0                            | 22.5 COLL PAN  |

| #34              | Chlorobenz   | ene-d5     |       |           |  |
|------------------|--------------|------------|-------|-----------|--|
| RT=              | 09:18.0      |            | 83    |           |  |
| #35              | BPFB HAPSI   |            |       |           |  |
| RT=              | 09:47.0      | Vet=       | 97    |           |  |
| #36              | BPFB_98      |            |       |           |  |
| RT=              | 09:47.1 F    | Fit=       | 99.1  | 5.350 ppm |  |
| #37              | BPFB_117     |            |       |           |  |
| RT=              | 09:48.2 F    | Fit=       | 99.1  | 5.350 ppm |  |
| #38              | BPFB_167     |            |       |           |  |
| RT=              | 09:48.2 F    | Fit=       | 99.1  | 5.350 ppm |  |
| #39              | BPFB_248     |            |       |           |  |
| RT=              | 09:48.2 F    | Fit=       | 99.1  | 5.350 ppm |  |
| #40              | Ethylbenzer  | ne         |       |           |  |
| RT=              | 10:00.8 F    | Fit=       | 99.8  | 0.282 ppb |  |
| #41              | m&p-xylene   | 9          |       |           |  |
| RT=              | 10:18.6 F    | Fit=       | 99.5  | 1.100 ppb |  |
| #42              | p-Xylene     |            |       |           |  |
| RT=              | 10:19.0      | Net=       | 98.0* |           |  |
| #43              | 3-Heptanor   | ne         |       |           |  |
| RT=              | 10:38.0      | Vet=       | 77    |           |  |
| #44              | Styrene      |            |       |           |  |
| RT=              | 10:52.0      | Net=       | 93    |           |  |
| #45              | styrene      |            |       |           |  |
| RT=              | 10:52.1 F    | Fit=       | 99.3  | 0.079 ppb |  |
| #46              | o-xylene     |            |       |           |  |
| RT=              | 11:01.5 F    | Fit=       | 99.7  | 0.421 ppb |  |
| #47              | p-Xylene     |            |       |           |  |
| RT=              | 11:02.0      | Net=       | 91.0* |           |  |
| #48              | Ethanol, 2-k | outoxy-    |       |           |  |
| RT=              | 11:21.0      | Net=       | 81    |           |  |
| #49              | Nonane       |            |       |           |  |
| RT=              | 11:36.0      | Net=       | 78.0* |           |  |
| #50              | Benzene, (1  | methyletl  | nyl)- |           |  |
| RT=              | 11:58.0      | Net=       | 76    |           |  |
| <b>#51</b>       | 1-Butanol, 3 | 3-methyl-  |       |           |  |
| RT=              | 12:17.0      | Net=       | 76    |           |  |
| #52              | Benzaldehy   |            |       |           |  |
| RT=              | 12:29.0      | Net=       | 93    |           |  |
| #53              | Benzene, pr  |            |       |           |  |
| RT=              | 12:45.0 ľ    |            | 83    |           |  |
| #54              | propyl benz  |            |       |           |  |
| RT=              | 12:45.1 F    |            | 100   | 0.051 ppb |  |
| <b>#55</b>       | 4-ethyltolue |            |       |           |  |
| RT=              | 12:58.8 F    |            |       | 0.447 ppb |  |
| #56              | Benzene, 1,  |            |       |           |  |
| RT=              | 12:59.0      |            | 93.0* |           |  |
| <mark>#57</mark> | Benzene, (1  | -methyletl | nyl)- |           |  |

| RT=        | 12:59.0 Net=           | 92.0*    |           |  |
|------------|------------------------|----------|-----------|--|
| #58        | Benzene, 1,3,5-trimet  |          |           |  |
| #36<br>RT= | 13:08.0 Net=           | 93.0*    |           |  |
| #59        | 1,3,5-trimethylbenzer  | <u> </u> |           |  |
| #59<br>RT= | 13:08.2 Fit=           |          | 0.204 ppb |  |
|            |                        |          | 0.204 ppb |  |
| #60        | 1,2,4-trimethylbenzer  |          | 0.650     |  |
| RT=        | 13:44.8 Fit=           |          | 0.653 ppb |  |
| #61        | Benzene, 1,3,5-trimet  |          |           |  |
| RT=        | 13:45.0 Net=           | 98.0*    |           |  |
| #62        | 1,4-Dichlorobenzene-   |          |           |  |
| RT=        | 13:58.0 Net=           | 90       |           |  |
| #63        | 1,2-dichlorobenzene    |          |           |  |
| RT=        | 14:00.4 Fit=           | 98       | 0.007 ppb |  |
| #64        | 1,4-dichlorobenzene    |          |           |  |
| RT=        | 14:00.4 Fit=           | 94.9     | 0.005 ppb |  |
| #65        | 1,3-dichlorobenzene    |          |           |  |
| RT=        | 14:00.4 Fit=           | 96.3     | 0.009 ppb |  |
| #66        | Decane                 |          |           |  |
| RT=        | 14:07.0 Net=           | 85.0*    |           |  |
| #67        | benzyl chloride        |          |           |  |
| RT=        | 14:14.0 Fit=           | 80       | 0.001 ppb |  |
| #68        | Benzene, 1,3,5-trimet  | hyl-     |           |  |
| RT=        | 14:23.0 Net=           | 90.0*    |           |  |
| #69        | 1-Hexanol, 2-ethyl-    |          |           |  |
| RT=        | 14:29.0 Net=           | 89.0*    |           |  |
| #70        | Limonene               |          |           |  |
| RT=        | 14:40.0 Net=           | 95.0*    |           |  |
| <b>#71</b> | Acetophenone           |          |           |  |
| RT=        | 15:01.0 Net=           | 87.0*    |           |  |
| #72        | 1-Propanone, 1-phen    | yl-      |           |  |
| RT=        | 15:01.0 Net=           | 81.0*    |           |  |
| <b>#73</b> | Benzene, 1,2-diethyl-  |          |           |  |
| RT=        | 15:04.0 Net=           | 75.0*    |           |  |
| #74        | Benzene, tert-butyl-   |          |           |  |
| RT=        | 15:35.0 Net=           | 79.0*    |           |  |
| <b>#75</b> | Benzene, 1-methyl-4-   | <u> </u> | hyl)-     |  |
| RT=        | 15:46.0 Net=           | 82.0*    |           |  |
| #76        | Undecane               |          |           |  |
| RT=        | 16:11.0 Net=           | 75       |           |  |
| #77        | Benzene, 1,2,3,4-tetra |          |           |  |
| RT=        | 16:27.0 Net=           | 90.0*    |           |  |
| #78        | Dodecane               |          |           |  |
| RT=        | 18:00.0 Net=           | 82       |           |  |
|            | 10.00.0   1100         | 52       |           |  |